A Grassroots Renewable Fuels Revolution

Presenters
Forrest Jehlik - Argonne National Laboratory

Contributors
- Project Objectives
- Engine Testing Results
- Track Testing Results: Performance
- Track Testing Results: Emissions
- Race Demonstration
- A Revolution
- Conclusions
Project objectives

- **Demonstrate using renewable fuels and modern technology:**
 1) Significant petroleum displacement
 2) Significant well-to-wheel (WTW) greenhouse gas reduction
 3) Significant criteria emission reduction
 4) Increased performance
 5) Greatly reduced operational cost

- **Generate significant educational outreach:**
 1) Supply a market for sustainable renewable fuels
 2) Reduce apprehension for adopting the use of newer fuels/technologies
 3) Increase the numbers of racers, spectators, and open new business opportunity’s
- Project Objectives
- Engine Testing Results
- Track Testing Results: Performance
- Track Testing Results: Emissions
- Race Demonstration
- A Revolution
- Conclusions
Engine testing

- LS3 based 6.2L GM CT-525 engine was tested at Mast Motorsports

- Testing benchmarked technologies and fuels:
 1) Fuel injection vs. carburetion
 2) E85 vs. 100 octane race fuel
 3) Catalyst vs. non catalyst

- Sensors, Inc. SEMTECH DS was used for emissions/fuel consumption analysis (portable emissions measurement system - PEMS)
E85 EFI w/ catalysts vs. 100 octane carburetor

<table>
<thead>
<tr>
<th>Configuration</th>
<th>HP peak</th>
<th>Torque peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>E85 100 oct, EFI, 100 CPI</td>
<td>539</td>
<td>499</td>
</tr>
<tr>
<td>100 oct, carb, no catalyst</td>
<td>552</td>
<td>477</td>
</tr>
</tbody>
</table>

EFI = Electronic Fuel Injected E85 = ethanol fuel (85% ethanol, 15% petroleum) carb = carbureted nocat = no catalyst 100CPI = 100 cell per inch catalyst 300CPI = 300 cell per inch catalyst 100oct = 100 octane race fuel
- Project Objectives
- Engine Testing Results
- Track Testing Results: Performance
- Track Testing Results: Emissions
- Race Demonstration
- A Revolution
- Conclusions
Track testing

- The same 6.2L GM CT-525 engine was used in a Chevrolet Camaro circle track car and tested at New Smyrna raceway.

- Sensors, Inc. SEMTECH DS portable emissions measurements system was used for emissions/fuel consumption analysis.

- Testing matrix benchmarked technologies and fuels:
 1. E85 vs. 100 octane race fuel
 2. Fuel injection vs. carburetion
 3. Catalyst vs. non catalyst
Dynamometer/track tests detail increased performance

On track recorded engine speed/load points. Data points color coded between EFI/E85 and carburetor. E85 more power for vast majority of drive cycle.

<table>
<thead>
<tr>
<th>RPM</th>
<th>% Load</th>
<th>Drive cycle %</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>4200</td>
<td>68</td>
<td>7</td>
</tr>
<tr>
<td>4300</td>
<td>100</td>
<td>17</td>
</tr>
<tr>
<td>4700</td>
<td>100</td>
<td>21</td>
</tr>
<tr>
<td>5200</td>
<td>100</td>
<td>19</td>
</tr>
<tr>
<td>5700</td>
<td>100</td>
<td>18</td>
</tr>
<tr>
<td>6100</td>
<td>100</td>
<td>13</td>
</tr>
</tbody>
</table>

E85, EFI configuration with catalysts makes more power and torque 87% of the time weighted engine RPM/load range: Results = faster lap times.
- Project Objectives
- Engine Testing Results
- Track Testing Results: Performance
- Track Testing Results: Emissions
- Race Demonstration
- A Revolution
- Conclusions
Catalyst emission reduction - EFI configuration

EFI = Electronic Fuel Injected E85 = ethanol fuel (85% ethanol, 15% petroleum) carb = carbureted nocat = no catalyst 100CPI = 100 cell per inch catalyst 300CPI = 300 cell per inch catalyst 100oct = 100 octane race fuel
- Project Objectives
- Engine Testing Results
- Track Testing Results: Performance
- Track Testing Results: Emissions
- Race Demonstration
- A Revolution
- Conclusions
Race demonstration

- The Chevrolet Camaro circle track race car using the same 6.2L GM CT-525 engine was raced at the La Crosse-Wisconsin Oktoberfest, 2010

- Data acquisition system measured real time fuel flow, CAN parameters, GPS

- Race car ran exclusively on E85, fuel injection, catalytic convertors (100 CPI)

- Data was analyzed and the petroleum displacement/GHG reduction determined
La Crosse Speedway - ½ mile asphalt track

The Project G.R.E.E.N Camaro placed 14/65
Cost of E85 was ~$2.35 per gallon. Race fuel at the track was $10.75.

Consuming just over 16 gallons of E85, our fuel cost for the weekend was $38.

Accounting for the per gallon E85 energy deficit, race fuel would have cost $131.

- The GM production CT-525 engine costs approximately $8500 (our engine).
- Custom built fuel injected LS3 engines cost approximately ~$14,000 (605 HP).
- Race engines at the event cost approximately $40,000.

These cost savings would grow the market size and support for renewable fuels.
• Project Objectives
• Engine Testing Results
• Track Testing Results: Performance
• Track Testing Results: Emissions
• Race Demonstration
• A Revolution
• Conclusions
The U.S. consumes over 20 million barrels of oil per day, ¼ the world's total. How much is that?

One day of U.S. consumption, 20 million barrels side-by-side, would stretch from California to the east coast, back to the west coast, then back to Nebraska.
The upcoming global oil gap[1]

Fig 6.6 Oil demand for the historical period 1920-2008, with extrapolations to 2050 for the IEA ‘Reference Case’ (1% growth rate) and the ITPOES ‘strong growth’ case. Also shown are two projections for production: a plateau (based on Shell’s paper in the first ITPOES Oil Crunch Report, 2008), and the ITPOES production cap (Section 3) followed by a 1 percent per annum net depletion rate. (Sources: BP Statistical Review of World Energy and the IEA’s World Energy Outlook 2009).
Using E85, the Project GREEN Camaro consumed 0.8 gallons of petroleum. The rest was renewable ethanol. A small sedan with a 4-cylinder engine consumes ~0.9 gallons of petroleum going the same distance over mixed city/highway driving.
GREET modeled greenhouse gas results[5]

Using E85/E100, the Project GREEN Camaro racing full speed using cellulosic E85 would generate less WTW GHG per mile than a small 4-cylinder sedan driving mixed city/highway cycles using petroleum.

Circle track racing has tremendous renewable fuels and advanced technology outreach potential!

- 20+ million people attend grassroots oval track races (annually)
- Auto racing is the #2 television audience sport in the U.S. (second to the NFL)
- There are approximately 443,000 participants (teams/drivers) in the United States [6]
- There are over 1,100 oval tracks in the U.S.- every state has an oval race track

6. According to 2004 data, Circle Track Magazine
 Project Objectives
 Engine Testing Results
 Track Testing Results: Performance
 Track Testing Results: Emissions
 Race Demonstration
 The Revolution
 Conclusions
Faster. Cheaper. Cleaner. Sustainable.

There are no Compromises

- Going green and going faster are synonymous
 - increased performance at a ~75% cost reduction
 - reduced petroleum consumption ~ 80% with domestically generated renewable fuels
 - reduced GHGs by ~75%
 - criteria emissions by ~60%

- Circle track racing offers tremendous audience for renewable fuels and sustainability

- Tremendously powerful message if cellulosic E85/advanced technology used:
 - In a 100 lap race, E85 would consume roughly 2.0 gallons of petroleum, less than a 4-cylinder small sedan, using petroleum, covering the same distance in mixed city/highway driving
 - GREET analysis shows that less WTW GHG would be emitted, per mile, using cellulosic E85 than a 4-cylinder small sedan using petroleum
Environmentalists?
Environmentalists!