Lessons Learned, Challenges, and Future Needs

Jim Spaeth
Demonstration and Deployment Program Manager

March 12, 2014
Outline

I. Introduction
II. Three Legged Stool
III. Pilot, Demonstration, and Pioneer Scales
IV. Portfolio Overview
V. Lessons Learned
VI. Challenges and Future Actions
BETO’s Demonstration and Deployment Program

De-risking of:
- Technology
- Construction
- Operations
- Finance
- Feedstock Supply
- Product Off take
- Markets
Success Depends On

- Policy
- Technology
- Finance
DOE Financing Assistance - Technology Pipeline

- **Basic Science**
- **Applied Science**
- **Technology Investors**
- **Asset Investors**
- **Markets**

Research
- Up to 80% federal cost share

Development
- Up to 50% federal cost share

Demonstration

Deployment

GRANTS

COOPERATIVE AGREEMENTS

TECHNOLOGY INVESTMENT AGREEMENTS

LOAN GUARANTEES

TAX CREDITS
PILOT
Integrate unit operations and validate techno-economic assessments

DEMONSTRATION
Verify performance at industrial scale and provide design specifications for a pioneer plant

PIONEER
Prove economic production at commercial volumes

PILOT OBJECTIVES
- Technical Performance
 - Prove conversion efficiencies
 - Confirm mass and energy balance
- Operations
 - Determine feedstock and product specifications
 - Integrate technology from feedstock in through product out
 - Evaluate process sustainability metrics
- Scale-Up to Demonstration
 - Develop robust economic model

DEMONSTRATION OBJECTIVES
- Market Risk
 - Manufacture product for commercial acceptence testing
- Operations
 - Generate over 1000 hours of continuous operational data
 - Balance sustainability performance across environmental, social, and economic dimensions
- Scale-Up to Pioneer
 - Validate commercial equipment specifications and performance

PIONEER OBJECTIVES
- Financial Risk
 - Prove technology is profitable to support robust replication of commercial facilities
- Feedstock Supply and Logistics
 - Demonstrate robust feedstock supply and offtake value chain
- Operations
 - Validate performance data and equipment design specifications
 - Verify sustainability performance across environmental, social, and economic dimensions
IBR Project Funding

[Graph showing IBR Project Funding with categories for Federal, Debt, and Industry, with investment amounts denoted for Pilot, Demonstration, Pioneer/1st Commercial, and NTH Plant stages.]
Portfolio Geographic Diversity

For more information visit: http://www.eere.energy.gov/biomass/integrated_biorefineries.html
Portfolio by Funding Year

Number of IBRs by Year/FOA

- 2007 - Commercial: 4
- 2008 - Demo: 4
- 2009 - ARRA Demo/Pilot/R&D: 7
- 2012 - I- Pilot: 18

Investment in IBRs by Year/FOA

- 2007 - Commercial: $17.7
- 2008 - Demo: $331.6
- 2009 - ARRA Demo/Pilot/R&D: $483.9
- 2012 - I- Pilot: $163.8

<table>
<thead>
<tr>
<th>DOE Share</th>
<th>Cost Share</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000,000,000</td>
<td>$1,500,000,000</td>
<td>$2,500,000,000</td>
</tr>
</tbody>
</table>
D&D Portfolio by Project Scale/TRL

Number of IBRs by Scale/TRL
- R&D: 6
- Pilot: 2
- Demo: 9
- Commercial: 16

Investment in IBRs by Scale/TRL
- R&D: $6.0
- Pilot: $295.55
- Demo: $443.56
- Commercial: $251.80
D&D Portfolio by Product

Number of IBRs by Product
- Cellulosic Ethanol: 16
- Renewable Hydrocarbons: 12
- Algae Oil: 3
- Bio-Products: 2

Investment in IBRs by Product
- Cellulosic Ethanol: $694
- Renewable Hydrocarbons: $152.01
- Algae Oil: $76.38
- Bio-Products: $74.8

Lessons to Re-Learn

- **Multiple new technology steps** - equates to higher risk
- **Feeding solid biomass to reactors** - continues to be a challenge
- Commercially available, ‘off-the-shelf’ equipment
 - Does not necessarily integrate easily into new processes
- **Integrated pilot testing** - has high value for new technologies
- Energy projects have **multi-decade time horizons** ...

Valley of Death for New Technologies: IPA Key Findings

• Commercializing some level of new technology - 40% of projects fail
• New technology projects – 80% don’t meet performance expectations

• Incorrect assessment of the level of difficulty posed by underlying process
 • Leads to overoptimistic expectations on project and process performance
 • Average cost growth = 30%
 • Average schedule growth = 65%
 • Average production shortfalls over 50% in second 6 months of operation
 • Average startup durations 50% longer than industry average

• Shortcomings often don’t surface until startup and operation
 • Only remedy is costly de-bottlenecking and corrective engineering

• Core lesson:
 • Must understand and accept higher levels of project and process risk
Figure 1 – Framework for Executing DOE Project Management for Integrated Biorefinery Projects

BP = Budget Period

DOE Order 413.3B Critical Decision Points
INEOS New Planet Biorefinery
Myrian’s Bio-Succinic Acid Plant
Abengoa Bioenergy

Graphic to be included in March update of BETO's MYPP.
POET: Project LIBERTY
Future

Assumes DOE continued investment and RIN Value of $0.50
Next Steps?

Challenges, Future Needs and Actions