Innovative Topics for Advanced Biofuels

Report-Out Webinar February 9, 2012

Jonathan Male, Ph.D. PNNL

Cross-cutting Technology Areas:

Dr. Jonathan Male

Biomass Laboratory Relationship Manager Pacific Northwest National Laboratory Richland, WA

Jonathan.male@pnnl.gov

Hybrid Biochemical/Thermochemical Processing

Lignin Utilization

Direct Conversion to Fuel from Unconventional Sources

Solvent Systems in Biomass Conversion

Separation Systems in Biomass Processing

Conversion Systems for Genetically Modified/Optimized Feedstocks

Hybrid Biochemical/Thermochemical Processing

Ongoing Work

Enzymatic hydrolysis with catalytic upgrading Lignocellulosic Lignin Heat Lignocellulosic Hydrogenolysis Soluble Sugars Soluble Sugars Starches Starches Aromatics, Alkanes Gasoline Reforming Reforming Reforming Alkene Oligomerization Sugar Alcohols Diesel

Syngas fermentation with catalytic upgrading of oxygenates

Hybrid Biochemical/Thermochemical Processing

Challenges

- Proliferation of Unit Operations –
 permutation of options non-obvious
- Successful Collaborations biochemical & thermochemical researchers
- Energy and Flow Integration heat integration, temperature swings potentially challenging and potentially costly; balancing batch with continuous operations
- Biological Upgrading of Thermochemically
 Derived Streams TC sugar streams, bio oils

Critical R&D Activities

- 1. Selective separation methods targeting products, intermediates, and poisons
- Rational design of new enzymes and catalysts
- 3. Form hybrid process working group
- TC production of chemical intermediates (HMF, CMF, LA)

Analysis – TEA tools enabling rational evaluation of hydrid processes

Catalysis - Biological and inorganic catalysts vary widely in requirements

Separations - Multi-prong approach to separation/fractionation

Lignin Utilization

Ongoing Work

- Modeling of lignin deconstruction during pyrolysis
- Chemical modification of lignin

- Hydrogen Requirements and minimization
 Post-Carbohydrate Usage how is lignin chemistry affected?
- Catalytic and Thermal Depolymerization –
 minimize coke, tar, char formation; increase
 selectivity and conversion to desirable
 precursors
- Programmatic identify OBP's role in this space and coordinate with other efforts

Lignin Utilization

Critical R&D Activities

- 1. Characterization of lignin across feedstock types and pretreatment regimes
- 2. Catalyst development for fuels/chemical synthesis
- 3. Development of value-added materials
- 4. Develop methods and standards for measuring and characterizing lignin

Direct Conversion to Fuel From Unconventional Sources

Ongoing Work

Techno-economic scoping (Consolidated BioProcessing)

BIOMASS

- Photoautotrophic Organisms Obtaining/utilizing light; product secretion
- Electrofuels Reaction rate; comparative energetics and CO₂
- **Growth Kinetics** *Identify OBP's role in this space and coordinate with other efforts*
- Gas Diffusion/Exchange Mass transfer of CO₂ into water; mass transport of gases
- Limited Data Availability Majority of approaches are in their infancy
- Organism SOT Suitable organisms may not have been identified or isolated yet. In addition, their performance in the presence of other dedicated organisms presents challenge

Direct Conversion to Fuel From Unconventional Sources

Critical R&D Activities

- 1. Modification of antennae systems
- 2. Photobioreactor engineering
- Screen strains, identify extremophiles, coordinate with ARPA-e
- 4. Examine ruminant systems
- 5. Membrane development
- 6. Develop analytical tools for complex systems
- Develop advanced Consolidated BioProcessing
- 8. Develop analytical tools for complex systems
- 9. Design microbes for growth on dense biomass

Analysis – Survey type TEAs

Catalysis – Catalyst/electrode/bioelectrode development

Feedstocks – Development of reduced-lignin or self destructive materials

Separations – High solids fermentation coupled with hydrocarbon production

Solvent Utilization in Biomass Conversion

complex

Ongoing Work

- Ionic liquids (JBEI, BASF)
- Organosolv
- Rapid hydrolysis & fractionation (PureVision)
- Leaching/reaction of trace species

Reaction scheme for recovering monomeric sugars from

ionic liquids using a boronic acid extraction technique. (Brennan T.C., Blanch H.W., Simmons B.A., and Holmes B.M.

Bioenergy Research (2010) 3:123-133)

- Solvent Properties
 - solvent toxicity and compatibility
 - solvent costs
 - solvent-specificity for the desired fractions/products
- Solvent use in Overall Process
 - solvent recovery due to residual solubility, entrainment of ash, and particulates,
 - fractionation of Biomass
 - Use in bio-crude

Solvent Utilization in Biomass Conversion

Critical R&D Activities

- Solvent recovery
 - Better Process, downstream tests and compatibility, test residuals
- 2. Solvent Properties
 - Thermodynamic measurements, identify optimal solvents for product recovery,
 leverage knowledge from past industrial cellulose solvents
- 3. Feasibility of solvents within bio-crude upgrading
 - Improve C5 utilization/flux in target organisms
- 4. Demonstrate solvent recycling feasibility
- 5. Fractionation into biomass sugars to feed advanced biofuels

Analysis - Process economics at various levels - screening to detailed

Catalysis - Measurement of degradation or upgrading (especially in bio-crude)

Separations - Compatibility with downstream - novel contaminants/byproducts

10

Separations Systems in Biomass Processing

Ongoing Work

- Bioreactor for continuous bioconversion and single-step separation
- Vapor phase filtration of pyrolysis vapors
- Membrane separation for C₅/C₆ sugar recovery
- Magnetic nanoparticles for sugar separation

Ceramic filter 0 cycles

Ceramic filter 1500 cycles

- Solids/Particulates Removal from Liquid and Vapor Systems
 - lack of understanding of effects on agronomics (soil/carbon, pathogens risks)
- Removal of Acids, Organics, Char, and Water
 - from vapor and liquid phase systems

Separations Systems in Biomass Processing

Critical R&D Activities

- 1. Vapor phase filters
- 2. Liquid phase membranes
- 3. Definition of process limits and process optimization
- 4. Equipment development and integration

Crosscutting R & D

Analysis – TEA to optimize systems within process limitation bounds

Catalysis – Tolerance for poisons/solids

Conversion Systems for Genetically Modified/Optimized Feedstocks

Ongoing Work

- Analytical methods and standards for establishing feedstock performance
- Bench and pilot scale testing support when sufficient quantities of modified feedstocks become available

- Unintended Consequence of GM lack of understanding of effects on agronomics (soil/carbon, pathogens risks)
- **Supply Chain** feedstock modifications can impact biomass supply chain (collection systems, storage characteristics, regulatory requirements)
- Process Design Engineering redesign necessary to maintain and exploit feedstock modifications
- **Programmatic** identify OBP's role in this space and coordinate with other efforts

Conversion Systems for Genetically Modified/Optimized Feedstocks

Critical R&D Activities

- Link DOE/USDA production platform work on variety modifications/optimization with conversion platforms
- 2. Develop new separation/collection systems/methods for modified feedstocks
- 3. Develop new/modify existing feedstock pretreatment to maintain built-in enzymes
- 4. Develop sustainability metrics/indices and practices for modified feedstocks
- 5. Current modified feedstocks target ethanol, opportunity to extend to hydrocarbons

