FY 2008

Progress Report for Lightweighting Materials

Energy Efficiency and Renewable Energy Office of Vehicle Technologies

Patrick Davis
Acting Program Manager, Vehicle Technologies Program

Carol Schutte
Team Leader, Advanced Materials Technology

Joseph Carpenter
Technology Area Development Manager

December 2009
CONTENTS

1. INTRODUCTION .. 1-1

2. AUTOMOTIVE METALS—WROUGHT .. 2-1
 A. Thermomechanical Processing Design for Lightweight Materials .. 2-1
 B. Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet (AMD602) 2-26
 C. Electromagnetic Forming of Aluminum Sheet ... 2-43
 D. Pulse Pressure Forming of Lightweight Materials ... 2-48
 E. Ultrafine Grained Foils and Sheets by Large Strain Machining Processes 2-51
 F. Formability of Continuous Cast Magnesium Sheet .. 2-54
 G. Development of High-Strength Superplastic Forming Aluminum Sheet for Automotive Applications .. 2-57
 H. Aluminum Automotive Closure Panel Corrosion Test Program .. 2-61

3. AUTOMOTIVE METALS—CAST .. 3-1
 A. Improved Automotive Suspension Components Cast with B206 Alloy 3-1
 B. Magnesium Powertrain Cast Components (AMD304) ... 3-10
 C. Ultra-Large Castings of Aluminum and Magnesium (AMD406) .. 3-18
 D. High Integrity Magnesium Automotive Castings (AMD601) ... 3-27
 E. Casting/Solidification of Magnesium Alloys ... 3-32
 F. Multi-Material Metallurgical Bond Joining to Steel ... 3-42

4. AUTOMOTIVE METALS—TITANIUM ... 4-1
 A. Low-Cost Titanium Powder for Feedstock ... 4-1
 B. Production of Heavy Vehicle Components from Low-Cost Titanium Powder 4-7
 C. Powder-Metal Performance Modeling of Automotive Components (AMD410) 4-14
 D. Examining Fundamental Mechanisms of Tooling Wear for Powder Processing 4-25

5. AUTOMOTIVE METALS—STEEL .. 5-1
 A. High-Strength Steel Joining Technologies ... 5-1
 B. Hydroforming Materials and Lubricants .. 5-10
 C. Sheet Steel Fatigue Characteristics (A/SP160) ... 5-16
 D. Tribology (A/SP230) ... 5-24
 E. Advanced High-Strength Steel Stamping (A/SP050) .. 5-27
 F. Strain-Rate Characterization (A/SP190) .. 5-34
 G. Future Generation Passenger Compartment—Validation (A/SP241) 5-39
 H. Lightweight Rear Chassis Structure (A/SP601) .. 5-44
 I. Characterization of Thermomechanical Behaviors of Advanced High-Strength Steels (AHSSs): Formability, Weldability, and Performance Evaluations of AHSS ... 5-50
<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.</td>
<td>Characterization of Thermomechanical Behavior of Advanced High-Strength Steels (AHSSs): Task 2—Weldability and Performance Evaluations of AHSS</td>
</tr>
<tr>
<td>K.</td>
<td>Fundamental Study of the Relationship of Austenite-Ferrite Transformation to Austenite Retention in Carbon Steels</td>
</tr>
<tr>
<td>L.</td>
<td>National Science Foundation Funding for the Development of Third Generation Advanced High-Strength Steels (A/SP280)</td>
</tr>
<tr>
<td>M.</td>
<td>A Multiresolution Analysis of the Particle Size and Interface Effects on the Strength and Ductility of Advanced High-Strength Steels</td>
</tr>
<tr>
<td>N.</td>
<td>Study of the Effects of Microstructure on the Mechanical Properties and Failure Mechanisms of Advanced High-Strength Steels</td>
</tr>
<tr>
<td>O.</td>
<td>Development of Novel Finite-Element Simulation Tools that Implement Crystal-Plasticity Constitutive Theories Using an Efficient Spectral Framework</td>
</tr>
<tr>
<td>P.</td>
<td>Advanced High-Strength Steel through Paraequilibrium Carbon Partitioning and Austenite Stabilization</td>
</tr>
<tr>
<td>Q.</td>
<td>Development of a High-Strength, High-Toughness Bainitic Steel</td>
</tr>
<tr>
<td>R.</td>
<td>Development of Nano-Acicular Duplex Steels</td>
</tr>
<tr>
<td>S.</td>
<td>Sheet Formability and Springback of Advanced High-Strength Steels—CSM</td>
</tr>
<tr>
<td>T.</td>
<td>Sheet Formability and Springback of Advanced High-Strength Steels—OSU</td>
</tr>
<tr>
<td>6.</td>
<td>AUTOMOTIVE METALS—CROSSCUTTING</td>
</tr>
<tr>
<td>A.</td>
<td>Magnesium Research and Technology Development</td>
</tr>
<tr>
<td>B.</td>
<td>Magnesium Front-End Design and Development (AMD603)</td>
</tr>
<tr>
<td>C.</td>
<td>Magnesium Front End Research and Development (AMD604)</td>
</tr>
<tr>
<td>D.</td>
<td>Nanotechnology-Based Self-Healing Coating System to Enable Use of Magnesium Alloys in Automotives</td>
</tr>
<tr>
<td>E.</td>
<td>High-Strain-Rate Characterization of Magnesium Alloys</td>
</tr>
<tr>
<td>F.</td>
<td>High-Rate Damage and Fracture, Experimentation, Simulation, and Visualization</td>
</tr>
<tr>
<td>G.</td>
<td>Integrated Computational Materials Engineering for Magnesium in Body Applications (Mg ICME) (AMD702 and 703)</td>
</tr>
<tr>
<td>H.</td>
<td>Multiscale Microstructure-Property Plasticity Considering Uncertainty</td>
</tr>
<tr>
<td>I.</td>
<td>Materials Design for Magnesium Alloys</td>
</tr>
<tr>
<td>J.</td>
<td>High Throughput Isotopic Diffusion Databases for Integrated Computational Materials Engineering</td>
</tr>
<tr>
<td>K.</td>
<td>Cyberinfrastructure</td>
</tr>
<tr>
<td>L.</td>
<td>Simulation-Based Design Optimization</td>
</tr>
<tr>
<td>M.</td>
<td>Fatigue of Lightweight Automotive Materials</td>
</tr>
<tr>
<td>7.</td>
<td>LOW-COST CARBON FIBER</td>
</tr>
<tr>
<td>A.</td>
<td>Low-Cost Carbon Fibers from Renewable Resources</td>
</tr>
<tr>
<td>B.</td>
<td>Advanced Stabilization of Polyacrylonitrile Fiber Precursor</td>
</tr>
<tr>
<td>C.</td>
<td>Advanced Oxidation of Polyacrylonitrile Fiber Precursor</td>
</tr>
<tr>
<td>D.</td>
<td>Precursor and Fiber Evaluation</td>
</tr>
<tr>
<td>E.</td>
<td>Commercialization of Textile and Lignin Precursors</td>
</tr>
</tbody>
</table>
8. POLYMER COMPOSITES RESEARCH AND DEVELOPMENT ... 8-1
 A. Automotive Composites Consortium Focal Project 4 (ACC007) 8-1
 B. Composite Underbody Attachment .. 8-16
 C. Development of Next-Generation Programmable Preforming Process 8-23
 D. Low-Cost Carbon-Fiber Composites for Lightweight Vehicle Parts 8-35
 E. High Volume Processing of Composites (ACC115) ... 8-41
 F. Natural Fiber Composite Retting, Preform, Manufacture, and Molding 8-49
 G. Natural Fiber Composites for Structural Component Design 8-60
 H. Evaluation of Composite Natural Fiber/Resin Compatibility 8-75
 I. Composite Crash Energy Management (ACC100) ... 8-82
 J. Engineering Property Prediction Tools for Tailored Polymer Composite Structures 8-93
 K. Predictive Modeling of the Structure and Properties of Polymer-Matrix Composites: NSF/DOE Grant Projects ... 8-105
 L. Hierarchical, Structure-Oriented Stochastic Approach to Model Liquid Molding Processes .. 8-108
 M. Simulating Injection Molding of Thermoplastics Reinforced with Short and Long Fibers ... 8-120
 N. Incorporating Higher-Order Tensors in the Computation of Polymer Composite Mechanical Properties ... 8-138
 O. Linking Process-Induced Properties to Thermoplastic-Matrix Woven-Fabric Composites Performance ... 8-149
 P. Structural Nanocomposite Design .. 8-169

9. JOINING .. 9-1
 A. Forming Limits of Weld Metal in Aluminum Alloys and Advanced High-Strength Steels .. 9-1
 B. Impact Modeling and Characterization of Spot Welds ... 9-8
 C. Friction Stir Spot Welding of Advanced High-Strength Steel 9-15
 D. Friction Stir and Ultrasonic Solid State Joining Magnesium to Steel 9-23
 E. Friction Bit Joining—An Innovation in Dissimilar Metal Joining 9-28
 F. Weld Element and Joining Process Technology Development 9-34

10. NONDESTRUCTIVE EVALUATION .. 10-1
 A. Nondestructive Inspection of Adhesive Metal-Metal Bonds (NDE601) 10-1
 B. Laser Ultrasonic Inspection of Adhesive Bonds Used in Automotive Body Assembly .. 10-10
 C. Online Nondestructive Weld Quality Monitor and Control with Infrared Thermography .. 10-15
 D. Enhanced Resonance Inspection for Light Metal Castings (NDE701) 10-23
 E. Global Quality Assessment of Joining Technology for Automotive Body-in-White .. 10-31

11. RECYCLING .. 11-1
 A. Recycling Assessments and Planning .. 11-1
B. Baseline Assessment of Recycling Systems and Technology ... 11-9
C. Development of Technology for Removal of PCBs and Other Substances of Concern from Shredder Residue ... 11-18
D. Post-Shred Materials Recovery Technology Development .. 11-27
E. Development of High Speed Multispectral Imaging for Sorting Automotive Plastics ... 11-39

12. MATERIALS CROSSCUTTING RESEARCH AND DEVELOPMENT 12-1
 A. Technical Cost Modeling.. 12-1
 B. Intermediate-Rate Crush Response of Crash-Energy Management Structures 12-7
 C. Mission Eggcellence—K–12 Outreach Program.. 12-13

APPENDIX A. ACRONYMS AND ABBREVIATIONS ... A-1