FISCAL YEAR 2011
ANNUAL PROGRESS REPORT FOR
ENERGY STORAGE R&D

January 2012

Approved by
David Howell, Hybrid Electric Systems Team Lead
Vehicle Technologies Program, Energy Efficiency and Renewable Energy
Table of Contents

I. INTRODUCTION ... 1
 I.A Vehicle Technologies Program Overview .. 1
 I.B Energy Storage Research & Development Overview ... 1
 I.B.1 Programmatic Structure .. 1
 I.B.2 Some Recent Highlights ... 3
 I.B.3 Organization of this Report.. 6
II. AMERICAN RECOVERY & REINVESTMENT ACT (ARRA) OF 2009 .. 7
 II.A Integrated Battery Materials Production, Cell Manufacturing, and Battery Assembly Facilities .. 11
 II.A.1 ARRA-supported Production Facility Project (Johnson Controls, Inc.) .. 11
 II.A.2 Vertically Integrated Mass Production of Automotive Class Lithium-ion Batteries (A123Systems) .. 15
 II.A.3 ARRA-supported Production Facility Project (Exide Technologies) .. 16
 II.A.4 ARRA-supported Production Facility Project (East Penn Manufacturing Co., Inc.) ... 20
 II.B Battery Cell and Pack Assembly Facilities ... 23
 II.B.1 ARRA-supported Production Facility Project (Dow Kokam MI, LLC) ... 23
 II.B.2 ARRA-supported Production Facility Project - Li-Ion Battery Manufacturing (LG Chem Michigan Inc.) .. 25
 II.B.3 ARRA-supported Lithium-ion Cell Production and Battery Pack Assembly (EnerDel, Inc.) ... 28
 II.B.4 Li-Ion Battery Pack Manufacturing (General Motors, LLC) ... 31
 II.B.5 Lithium-ion Cell Production and Battery Pack Assembly (Saft America, Inc.) .. 34
 II.C Battery Materials Production Facilities .. 36
 II.C.1 ARRA-supported Production Facilities (Celgard, LLC) ... 36
 II.C.2 Advanced Cathode Materials Production Facility (Toda America Inc.) ... 39
 II.C.3 ARRA-supported Production Facility Project (Chemetall Foote Corp.) ... 40
 II.C.4 High-Volume Manufacturing of LiPF6 - A Critical Lithium-ion Battery Material (Honeywell) ... 42
 II.C.5 Construction of a Li-ion Battery Cathode Production Plant (BASF) .. 45
 II.C.6 ARRA-supported Nanoengineered Ultracapacitor Material Production Facility Project (EnerG2, Inc.) ... 46
 II.C.7 ARRA-supported Production Facility Project (Novolyte Technologies) ... 48
 II.C.8 ARRA-supported Production Facility Project (FutureFuel Chemical Company) .. 50
 II.C.9 ARRA-supported Production Facility Project (Pyrotek Incorporated) ... 53
 II.C.10 Manufacture of Advanced Battery Components (HTTM LLC, H&T, Trans-Matic) .. 56
 II.D Battery Recycling Facilities ... 59
 II.D.1 ARRA-supported Production Facility Project (Toxco, Inc.) ... 59
 II.E Battery Research Facilities ... 61
 II.E.1 ARRA-supported Prototype Cell Fabrication Facility (ANL) ... 61
 II.E.2 ARRA-supported Material Scale-Up Facility (ANL) ... 63
 II.E.3 Post-test Laboratory Facility (ANL) ... 66
 II.E.4 High-Energy Battery Testing Facility (INL) .. 69
 II.E.5 Battery Thermal Test Laboratory (NREL) .. 72
 II.E.6 Battery Abuse Test Facility (SNL) ... 75
III. ADVANCED BATTERY DEVELOPMENT, SYSTEMS ANALYSIS, AND TESTING ... 77
 III.A Advanced Battery Development .. 80
 III.A.1 High Energy/EV Systems ... 83
III.A.1.1 EV Battery Development (Envia Systems) ... 83
III.A.1.2 EV Battery Development (Cobasys) ... 88
III.A.1.3 Development of High Performance Advanced Batteries for Electric Vehicle Applications (Quallion) ... 92
III.A.2 High Energy/PHEV Systems ... 95
III.A.2.1 Advanced High-Performance Batteries for Plug-In Hybrid Electric Vehicle Applications (JCI) ... 95
III.A.2.2 Development of a High-Performance PHEV Battery Pack (LG Chem, Michigan) ... 101
III.A.2.3 PHEV Battery Development (A123 Systems) ... 103
III.A.3 High Power/HEV and LESS Systems ... 108
III.A.3.1 HEV LESS Battery Development (A123 Systems) ... 108
III.A.3.2 LESS Battery Development (Maxwell) ... 113
III.A.3.3 Capacitor Development (NSWC) ... 117
III.A.4 Technology Assessment Programs ... 122
III.A.4.1 EV Technology Assessment Program (SK Energy) ... 122
III.A.4.2 EV Technology Assessment Program (K2 Energy) ... 123
III.A.4.3 EV Technology Assessment Program (Leyden Energy) ... 124
III.A.4.4 LESS Technology Assessment Program (Actacell) ... 125
III.A.5 Development of Advanced Lithium-ion Battery Cell Materials ... 126
III.A.5.1 Next Generation Battery Materials (Amprius) ... 126
III.A.5.2 Development of Large Format Lithium-Ion Cells with Higher Energy Density (Dow Kokam, LLC) ... 128
III.A.5.3 Innovative Cell Materials and Designs for 300 mile range EVs (Nanosys) ... 130
III.A.5.4 High Energy Novel Cathode / Alloy Automotive Cell (3M) ... 132
III.A.5.5 Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes (Applied Materials) ... 135
III.A.5.6 Solid Polymer Batteries for Electric Drive Vehicles (Seeo, Inc.) ... 136
III.A.5.7 Development of High-Energy Lithium Sulfur Cells (PSU) ... 138
III.A.6 Low-cost Processing ... 140
III.A.6.1 Advanced Manufacturing Process to Reduce Manufacturing Cost of Li-ion Cells (JCI) ... 140
III.A.6.2 Ultraviolet and Electron Beam curing technology to reduce electrode manufacturing cost (Miltec UV International) ... 143
III.A.6.3 Dry Process Electrode Fabrication (A123Systems) ... 145
III.A.7 Inactive Materials/Components Reduction Techniques ... 147
III.A.7.1 Innovative Manufacturing and Materials for Low Cost Lithium Ion Batteries (Optodot Corporation) ... 147
III.A.7.2 Stand Alone Battery Thermal Management System (Denso) ... 149
III.B Advanced Materials and Processing ... 152
III.B.1 Multifunctional, Inorganic-Filled Separator Development for Large Format Li-ion Batteries (ENTEK Membranes, LLC) ... 152
III.B.2 Advanced Negative Electrode Materials for PHEV Li-Ion Batteries (3M) ... 155
III.B.3 Stabilized Lithium Metal Powder (SLMP®), Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries (FMC) ... 159
III.B.4 Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes (Sion Power) ... 163
III.B.5 Process for Low-Cost Domestic Production of LIB Cathode Materials (BASF) ... 170
III.B.6 Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for Lithium-Ion Batteries (Angstron) ... 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.B.7 New High-Energy Nanofiber Anode Materials (NCSU)</td>
<td>178</td>
</tr>
<tr>
<td>III.B.8 Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives in Lithium-Ion Batteries (EnerDel)</td>
<td>183</td>
</tr>
<tr>
<td>III.B.9 Internal Short Circuits in Lithium-Ion Cells for PHEVs (TIA)</td>
<td>186</td>
</tr>
<tr>
<td>III.B.10 High Throughput Fabrication of 10 Year PHEV Battery Electrodes (A123Systems)</td>
<td>191</td>
</tr>
<tr>
<td>III.B.11 Small Business Innovative Research Projects (SBIR)</td>
<td>193</td>
</tr>
<tr>
<td>III.C Systems Analysis</td>
<td>195</td>
</tr>
<tr>
<td>III.C.1 PHEV Battery Cost Assessments (TIA)</td>
<td>195</td>
</tr>
<tr>
<td>III.C.2 Battery Pack Requirements and Targets Validation (ANL)</td>
<td>198</td>
</tr>
<tr>
<td>III.C.3 Battery Life Trade-Off Studies (NREL)</td>
<td>203</td>
</tr>
<tr>
<td>III.C.4 Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (NREL)</td>
<td>206</td>
</tr>
<tr>
<td>III.C.5 Plug-In Electric Vehicle (PEV) Battery Second Use (NREL)</td>
<td>210</td>
</tr>
<tr>
<td>III.C.6 Battery Recycling (ANL)</td>
<td>213</td>
</tr>
<tr>
<td>III.C.7 Low Energy HEV Requirements Analysis (NREL)</td>
<td>218</td>
</tr>
<tr>
<td>III.C.8 PHEV Battery Cost Assessment (ANL)</td>
<td>222</td>
</tr>
<tr>
<td>III.D Battery Testing Activities</td>
<td>226</td>
</tr>
<tr>
<td>III.D.1 Battery Performance and Life Testing (ANL)</td>
<td>226</td>
</tr>
<tr>
<td>III.D.2 Advanced Energy Storage Life and Health Prognostics (INL)</td>
<td>229</td>
</tr>
<tr>
<td>III.D.3 Battery Performance and Life Testing (INL)</td>
<td>234</td>
</tr>
<tr>
<td>III.D.4 Battery Abuse Testing (SNL)</td>
<td>239</td>
</tr>
<tr>
<td>III.D.5 Developmental & Applied Diagnostic Testing (INL)</td>
<td>243</td>
</tr>
<tr>
<td>III.D.6 Battery Thermal Analysis and Characterization Activities (NREL)</td>
<td>248</td>
</tr>
<tr>
<td>III.D.7 Internal Short Circuit Test Development (SNL)</td>
<td>251</td>
</tr>
<tr>
<td>III.D.8 Development of an On-Demand Internal Short Circuit (NREL)</td>
<td>256</td>
</tr>
<tr>
<td>III.E Computer Aided Engineering of Batteries</td>
<td>259</td>
</tr>
<tr>
<td>III.E.1 Computer Aided Engineering of Batteries – CAEBAT (NREL)</td>
<td>259</td>
</tr>
<tr>
<td>III.E.2 Computer Aided Engineering of Batteries Effort (ORNL)</td>
<td>264</td>
</tr>
<tr>
<td>III.E.3 Development of Computer Aided Design Tools for Automotive Batteries (GM)</td>
<td>268</td>
</tr>
<tr>
<td>III.E.4 Development of Computer Aided Design Tools for Automotive Batteries (CD-Adapco)</td>
<td>271</td>
</tr>
<tr>
<td>III.E.5 Development of Computer Aided Design Tools for Automotive Batteries (EC Power)</td>
<td>274</td>
</tr>
<tr>
<td>III.E.6 Multi-Scale Multi-Dimensional (MSMD) Framework and Modeling Activities (NREL)</td>
<td>277</td>
</tr>
<tr>
<td>III.E.7 Lithium-Ion Abuse Model Development (NREL)</td>
<td>283</td>
</tr>
<tr>
<td>III.F Energy Storage R&D Collaborative Activities with the International Energy Agency (IEA), Canada, and China</td>
<td>288</td>
</tr>
<tr>
<td>IV. APLIED BATTERY RESEARCH FOR TRANSPORTATION</td>
<td>291</td>
</tr>
<tr>
<td>IV.A Introduction</td>
<td>293</td>
</tr>
<tr>
<td>IV.B Materials Research</td>
<td>296</td>
</tr>
<tr>
<td>IV.B.1 Cell Components and Composition</td>
<td>296</td>
</tr>
<tr>
<td>IV.B.1.1 Screen Electrode Materials and Cell Chemistries (ANL)</td>
<td>296</td>
</tr>
<tr>
<td>IV.B.1.2 Streamlining the Optimization of Li-Ion Battery Electrodes (ANL)</td>
<td>301</td>
</tr>
<tr>
<td>IV.B.1.3 Scale-Up of BATT Program Materials for Cell-Level Evaluation (LBNL)</td>
<td>306</td>
</tr>
<tr>
<td>IV.B.2 Applied Battery Research on Anodes</td>
<td>309</td>
</tr>
<tr>
<td>IV.B.2.1 Developing a New High Capacity Anode with Long Life (ANL)</td>
<td>309</td>
</tr>
<tr>
<td>IV.B.2.2 Develop Improved Methods of Making Inter-metallic Anodes (ANL)</td>
<td>312</td>
</tr>
<tr>
<td>IV.B.2.3 Spherical Carbon Anodes Fabricated by Autogenic Reactions (ANL)</td>
<td>317</td>
</tr>
</tbody>
</table>
IV.B.2.4 Functionalized Surface Modification Agents to Suppress Gassing Issue of Li4Ti5O12-Based
Lithium-Ion Chemistry (ANL) .. 321
IV.B.3 Applied Battery Research on Cathodes .. 325
IV.B.3.1 Engineering of High Energy Cathode Material (ANL) ... 325
IV.B.3.2 Developing New High Energy Gradient Concentration Cathode Material (ANL) 330
IV.B.3.3 Design and Evaluation of Novel High Capacity Cathode Materials (ANL) 334
IV.B.3.4 Novel Composite Cathode Structures (ANL) ... 339
IV.B.3.5 Development of High-Capacity Cathode Materials with Integrated Structures (ANL) 345
IV.B.3.6 Cathode Processing Comparison Study (ANL) ... 349
IV.B.4 Applied Battery Research on Electrolytes ... 354
IV.B.4.1 Novel Electrolytes and Electrolyte Additives for PHEV Applications (ANL) 354
IV.B.4.2 Develop Electrolyte Additives (ANL) .. 359
IV.B.4.3 High Voltage Electrolyte for Lithium-ion Battery (ANL) .. 364
IV.B.4.4 High Voltage Electrolytes for Li-ion Batteries (ARL) ... 369
IV.B.4.5 Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide
Operating Temperature Range (JPL) ... 375
IV.B.4.6 Novel Phosphazene-Based Compounds to Enhance Electrolyte Safety and Stability for High
Voltage Applications (INL) ... 382
IV.C Calendar and Cycle Life Studies ... 388
IV.C.1 Diagnostics and Modeling .. 388
IV.C.1.1 Electrochemistry Cell Model (ANL) ... 388
IV.C.1.2 Battery Design Modeling (ANL) ... 393
IV.C.1.3 Diagnostic Studies on Li-Battery Cells and Cell Components (ANL) ... 398
IV.C.1.4 Structural Investigations of Layered Oxide Materials for PHEV Applications (ANL) 403
IV.C.1.5 Electrochemistry Diagnostics of Baseline and New Materials (LBNL) ... 408
IV.C.1.6 Mechanistic, Molecular, and Thermodynamic Modeling/Diagnostics in support of ABR Cell
Performance and Aging Studies (INL) .. 412
IV.C.1.7 Mechanistic, Molecular, and Thermodynamic Modeling/Diagnostics in support of ABR Cell
Performance and Aging Studies (ORNL) .. 417
IV.C.2 Cell Fabrication and Testing ... 421
IV.C.2.1 Fabricate PHEV Cells for Testing & Diagnostics (ANL) ... 421
IV.C.2.2 Baseline PHEV Cell Life Testing (ANL) .. 426
IV.D Abuse Tolerance Studies .. 429
IV.D.1 Abuse Diagnostics ... 429
IV.D.1.1 Diagnostic Studies Supporting Improved Abuse Tolerance (BNL) .. 429
IV.D.2 Abuse Mitigation ... 436
IV.D.2.1 Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse (ANL) ... 436
IV.D.2.2 Impact of Materials on Abuse Response (SNL) .. 442
IV.D.2.3 Overcharge Protection for PHEV Cells (LBNL) .. 447
IV.E Applied Research Facilities .. 452
IV.E.1 Battery Materials Pilot Production Facility ... 452
IV.E.1.1 Process Development and Scale up of Advanced Cathode Materials (ANL) 452
IV.E.1.2 Process Development and Scale-up of Advanced Electrolyte Materials (ANL) 456
IV.E.2 Post-Test Diagnostics Facility ... 458
IV.E.2.1 Post-Test Diagnostics Facility: Instrumentation and Protocol Development Activities (ANL) 458
V. FOCUSED FUNDAMENTAL RESEARCH ... 466

V.A Introduction ... 467

V.B Cathode Development ... 470

V.B.1 First Principles Calculations and NMR Spectroscopy of Electrode Materials (MIT, SUNY) ... 470
V.B.2 Cell Analysis, High-energy Density Cathodes and Anodes (LBNL)... 475
V.B.3 Olivines and Substituted Layered Materials (LBNL) ... 478
V.B.4 Stabilized Spinels and Nano Olivines (U. Texas) ... 483
V.B.5 The Synthesis and Characterization of Substituted Olivines and Manganese Oxides (SUNY) 488
V.B.6 Cell Analysis-Interfacial Processes: SEI Formation and Stability on Cycling (HQ) .. 492
V.B.7 The Role of Surface Chemistry on the Cycling and Rate Capability of Lithium Positive Electrode Materials (MIT) ... 495
V.B.8 Characterization of New Cathode Materials using Synchrotron-based X-ray Techniques and the Studies of Li-Air Batteries (BNL, U. Mass) .. 503
V.B.9 Layered Cathode Materials (ANL) ... 508
V.B.10 Development of High Energy Cathode (PNNL) ... 513
V.B.11 Crystal Studies on High-energy Density Cathodes (LBNL) ... 518
V.B.12 Developing Materials for Lithium-Sulfur Batteries (ORNL) .. 524
V.B.13 Studies on the Local State of Charge (SOC) and Underlying Structures in Lithium Battery Electrodes (ORNL) .. 529
V.B.14 New Cathode Projects (LBNL) ... 533

V.C Anode Development .. 535

V.C.1 Nanoscale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries (U Pitt) ... 535
V.C.2 Interfacial Processes – Diagnostics (LBNL).. 540
V.C.3 Search for New Anode Materials (UTA) ... 545
V.C.4 Nano-structured Materials as Anodes (SUNY) .. 548
V.C.5 Development of High Capacity Anodes (PNNL) .. 551
V.C.6 Advanced Binder for Electrode Materials (LBNL) ... 555
V.C.7 Three-Dimensional Anode Architectures and Materials (ANL) .. 560
V.C.8 Metal-Based High-Capacity Li-Ion Anodes (SUNY) .. 564
V.C.9 New Layered Nanolaminates for Use in Lithium Battery Anodes (Drexel U) .. 567
V.C.10 Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes (NREL, U Col) 571
V.C.11 Synthesis and Characterization of Si/SiOx-Graphene Nanocomposite Anodes and Polymer Binders (PSU) ... 576
V.C.12 Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries (SwRI) .. 580
V.C.13 Wiring Up Silicon Nanoparticles for High-Performance Lithium-Ion Battery Anodes (Stanford U) 585
V.C.14 Hard Carbon Materials for High-Capacity Li-ion Battery Anodes (ORNL) .. 590

V.D Electrolyte Development .. 593

V.D.1 Polymer Electrolytes for Advanced Lithium Batteries (UC, Berkeley) .. 593
V.D.2 Interfacial Behavior of Electrolytes (LBNL) .. 597
V.D.3 Molecular Dynamics Simulation Studies of Electrolytes and Electrolyte/Electrode Interfaces (Univ Utah) 602
V.D.4 Bi-functional Electrolytes for Lithium-ion Batteries (CWRU) ... 605
V.D.5 Advanced Electrolyte and Electrolyte Additives (ANL) ... 609
V.D.6 Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes (NCSU) ... 612
V.D.7 Development of Electrolytes for Lithium-ion Batteries (URI) ... 616
V.D.8 Sulfones with Additives as Electrolytes (ASU) .. 621
V.D.9 Long-lived Polymer Electrolytes (ORNL) ... 625
V.E Cell Analysis, Modeling, and Fabrication ... 628
V.E.1 Electrode Fabrication and Failure Analysis (LBNL) .. 628
V.E.2 Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer (UM) 632
V.E.3 Intercalation Kinetics and Ion Mobility in Electrode Materials (ORNL) ... 636
V.E.4 Modeling – Mathematical Modeling of Next-generation Li-ion Chemistries (LBNL) 641
V.E.5 Analysis and Simulation of Electrochemical Energy Systems (LBNL) ... 644
V.E.6 Investigation of Critical Parameters in Li-ion Battery Electrodes (LBNL) .. 647
V.E.7 Modeling - Predicting and Understanding New Li-ion Materials Using Ab Initio Atomistic Computational Methods (LBNL) .. 651
V.E.8 New Electrode Designs for Ultra-high Energy Density (MIT) ... 654
V.E.9 In Situ Electron Spectroscopy of Electrical Energy Storage Materials (ORNL) 658
V.F Energy Frontier Research Centers ... 661
V.F.1 Energy Frontier Research Center at ANL (ANL) .. 661
V.F.2 Novel In Situ Diagnostics Tools for Li-ion Battery Electrodes (LBNL) .. 666
V.G Integrated Lab-Industry Research Program (LBNL, ANL) ... 670
Appendix A: List of Contributors and Research Collaborators .. 676
Appendix B: Acronyms ... 683
List of Figures

Figure II - 1: American Recovery and Reinvestment Act (ARRA) 2009 grants distribution for battery and electric drive manufacturing ... 9

Figure II - 2: Michigan Li-ion battery plant during construction – 1000 construction workers were employed in the construction of our Michigan plant. ... 13

Figure II - 3: Construction included the upfit of an existing building for Li-ion battery production, including the construction of new outbuildings to house equipment and materials. ... 13

Figure II - 4: This project helped fund the material characterization and test facilities that are critical to support advanced energy production programs. ... 13

Figure II - 5: Johnson Controls’ facilities include the equipment necessary to perform all relevant battery and cell tests, including cycle testing in controlled temperature environments. .. 13

Figure II - 6: Pilot scale equipment installed in controlled environments support the mass production programs. 13

Figure II - 7: Equipment – Pack assembly was up and running within 10 months of receiving the award from the Department of Energy... 14

Figure II - 8: Complete battery packs and systems are assembled domestically prior to being sent to the customer........ 14

Figure II - 9: The Ford Transit Connect Electric features a 28 kWh Li-ion pack that was built in our Michigan plant...... 14

Figure II - 10: Livonia Cell Assembly Line... 15

Figure II - 11: New State-of-the-Art AGM Battery Assembly Operation in Columbus, Georgia Exide Battery Plant....... 16

Figure II - 12: New World-Class Continuous Plate Manufacturing Operation in Columbus, Georgia Exide Battery Plant. 17

Figure II - 13: Optimized Lead Plate Curing Operation in Columbus, Georgia Exide Battery Plant. .. 17

Figure II - 14: Significant Additional Production Capacity in Battery Formation Department – Columbus, Georgia Exide Battery Plant. ... 17

Figure II - 15: Product Validation Trial Production has begun on the New Advanced AGM Battery Assembly Expansion Line – Columbus, Georgia Exide Battery Plant. .. 17

Figure II - 16: Empty Building Site was readied for the New Advanced AGM Spiral Wound Battery Production Equipment. ... 18

Figure II - 17: New High Purity Lead Oxide Manufacturing Operation in the new AGM area in the Bristol, Tennessee Exide Battery Plant. ... 18

Figure II - 18: State of the Art Grid Manufacturing Operation in the new AGM Battery Operation in Bristol, Tennessee Exide Plant. ... 18

Figure II - 19: Automated Spiral Wound Plate Manufacturing Line in New Advanced AGM Battery Area in Bristol, Tennessee Exide Plant. ... 19

Figure II - 20: Overall View of new AGM Battery Production area in Bristol, Tennessee Exide Battery Plant. 19

Figure II - 21: Facility 1 – Automotive Battery Plant A4 Equipment .. 21

Figure II - 22: Facility 2 – Injection Molding Plants IM1/IM2 Equipment ... 21

Figure II - 23: UltraBattery Test Vehicle (on site at East Penn Mfg). ... 22

Figure II - 24: Midland, Michigan Manufacturing Facility – Dow Kokam, LLC ... 23

Figure II - 25: Midland, Michigan Manufacturing Facility – Dow Kokam, LLC (cont’d) ... 24

Figure II - 26: LG Chem, MI, Production Facility – Street View – Street View – Front of Main Building (1st Qtr. 2011).......... 26

Figure II - 27: LG Chem, MI, Production Facility – Street View – Rear (Electrode Building on Left) (1st Qtr. 2011)....... 26

Figure II - 28: LG Chem, MI, Production Facility – Arial View of Entire Facility (October, 2011)................................. 26

Figure II - 29: LG Chem, MI, Production Facility – Pre-Aging Area Equipment ... 26

Figure II - 30: LG Chem, MI, Production Facility – Formation Area Equipment ... 27

Figure II - 31: LG Chem, MI, Production Facility – Li-Ion Battery Cell. .. 27
Figure II - 113: View of large 500V test channel received in FY 2011 for the new laboratory. 2 units have been received with 4 additional units scheduled for FY12 delivery .. 71
Figure II - 114: Vibration testing system for full size vehicle battery pack testing received in FY 2011 71
Figure II - 115: TTF Laboratory before Construction .. 73
Figure II - 116: TTF Laboratory Chilled Water and Electrical Installation ... 73
Figure II - 117: TTF Laboratory after Construction and Equipment Installation .. 73
Figure II - 118: TTF Laboratory Environmental Chambers (3/5) with JCS and A123Systems PHEV battery packs under test ... 73
Figure II - 119: TTF Laboratory Bitrode Battery Cyclers .. 73
Figure II - 120: Thin film thermal conductivity meter, coin cell calorimeter, and bulk thermal conductivity meter (clockwise from upper left) .. 74
Figure II - 121: NREL-designed/fabricated cell calorimeter .. 74
Figure II - 122: Completed renovated test cell in the abuse facility .. 76
Figure II - 123: CT image of an 18650 lithium-ion cell with a large defect in the roll ... 76

Figure III - 1: SEM image of cathode #8 used in cell build #2 .. 85
Figure III - 2: C/3 discharge capacity of HCMRTM with two different electrolytes measured at various temperatures 85
Figure III - 3: Charge and Regen resistance measured from a 20Ah pouch cell from cell build iteration #1 86
Figure III - 4: Cycle Life Performance According to Current Density ... 89
Figure III - 5: Thermal Shrinkage of Polyolefin and Ceramic Coated Separators .. 89
Figure III - 6: Cycle life performance of Ext-NMC Coin Cells With Various Electrolyte Systems 90
Figure III - 7: Usage Simulation Based On Continuous Repetition of USABC Fast Charge Requirements and US06 Drive Pattern .. 91
Figure III - 8: Molding Parameter Optimization ... 91
Figure III - 9: Carbon Nanofiber Impregnated Soft Carbon (CN-SC) (top). Schematic (below). SEM of Actual Combination .. 93
Figure III - 10: Battery shown with COTS HP (top) and COTS HC (bottom) .. 93
Figure III - 11: Quallion HP Module, 9.7 kW and 207 A Max Discharge Current ... 94
Figure III - 12: Quallion HP Pouch Cell, 2300 mAh ... 94
Figure III - 13: Cycle life (4.1-2.7V) at 45°C on Gen1 VL9M* with various NMC materials 96
Figure III - 14: Mechanical design evolution ... 97
Figure III - 15: Preliminary prismatic cell mechanical design ... 97
Figure III - 16: Commercial-intent design module ... 98
Figure III - 17: Commercial-intent design 20-mile system ... 98
Figure III - 18: Thermal interface shown between cells and heat sink ... 99
Figure III - 19: Bench test system (internal build) for thermal validation ... 99
Figure III - 20: Cycling results demonstrate marked build over build improvement in capacity and resistance retention (pink representative of final deliverable) ... 99
Figure III - 21: Up to 70 ºC, capacity loss after one month is only 5% ... 99
Figure III - 22: Progression of cost model output ... 100
Figure III - 23: Gen 1.0 Power and Energy, > 21 Months Storage at 35°C in USABC Calendar Life test 104
Figure III - 24: Gen 1.0 Available Energy, >21 Months Storage at 35°C in USABC Calendar Life Test 104
Figure III - 25: Gen 1 PHEV Cells, Comparison of Calendar Life Models .. 105
Figure III - 26: Gen1 versus Gen1.5 Calendar Life Projections .. 105
Figure III - 27: Gen1.5 Results on 10 Mile PHEV USABC Charge Depleting Regime 105
Figure III - 28: Gen1.5 Results on 40 Mile PHEV USABC Charge Depleting Regime .. 106

Energy Storage R&D x FY 2011 Annual Progress Report
Figure III - 29: Modified Anode Formulations vs ASI Target ... 109
Figure III - 30: Capacity and Impedance for Modified Anode Formulation.. 110
Figure III - 31: Pulse Power Results at 23°C, in a 6 Ah HEV Cell ... 110
Figure III - 32: 45°C Cycle Life Testing of Trial Electrolytes in 6 Ah HEV Cells 111
Figure III - 33: Stacked Module Assembly for HEV LEESS Pack .. 111
Figure III - 34: A123 Systems HEV LEESS Program Plan .. 112
Figure III - 35: Gap chart showing progress towards program goals .. 114
Figure III - 36: GEN 1 35 F lab cells delivered to INL for testing ... 115
Figure III - 37: First 250 F cell with dry process electrodes shows good stability when cycled to 4.0 V ... 115
Figure III - 38: Concept for mounting trays in pack .. 116
Figure III - 39: Latest concept for 80 cell system ... 116
Figure III - 40: The discharge voltage profiles of a 500 F, Gen-1 electrolyte cell cycled at the 10C rate 118
Figure III - 41: Effect of temperature on EIS data obtained on Gen-1 cell at 3.0 V 119
Figure III - 42: Twenty-fifth cycle discharge profiles of a 3-electrode pouch cell containing electrodes harvested from a Gen-1, 500 F cell. Cell was cycled at 1 mA cm-2, 3.8 V to 2.2 V.. 120
Figure III - 43: DSC curves comparing the electrode materials, electrolyte, and separator of the 1st generation lithium ion capacitor and a conventional, double layer capacitor .. 120
Figure III - 44: ARC data from LIC cells containing Gen-1 (a) and Gen-2 electrolyte (b) 120
Figure III - 45: SK 25 Ah pouch cell .. 122
Figure III - 46: K2’s LFP165HES 51 Ah Energy Module ... 123
Figure III - 47: LFP45 45 Ah Flat Pack Automotive Cell ... 123
Figure III - 48: Leyden 10 Ah Pouch Cell .. 124
Figure III - 49: Actacell 8 Ah pouch cell .. 125
Figure III - 50: Amprius Silicon-nanowire anode technology .. 126
Figure III - 51: The Amprius team composition ... 127
Figure III - 52: Comparative voltage curves for commercial NMC111 and 3M sample A 133
Figure III - 53: Comparison of cycling performance between with and without new additive of DS3 134
Figure III - 54: Nanocomposite sulfur cathode (PSU) and conventional sulfur cathode capacity 139
Figure III - 55: 15Ah Baseline Cell Drawing .. 141
Figure III - 56: Example of Battery Cell Capacity Reduced at High Temperatures 150
Figure III - 57: Example of Battery Capacity Reduction at Cold Temperatures 150
Figure III - 58: Typical State of the Art Liquid Cooled Battery System .. 151
Figure III - 59: 18650 cells with silica-filled separators .. 153
Figure III - 60: 18650 cells with unfilled polyolefin separators ... 154
Figure III - 61: Capacity retention for 18650 using 60:28:2:10 wt% of L-20772:CPG8:SuperPLi:LiPAA ... 156
Figure III - 62: Charge Depleting Cycle Profile .. 157
Figure III - 63: Change and Discharge Pulse Resistance after 250, 500 and 750 Charge Depleting Cycle .. 157
Figure III - 64: Fit of reversible volumetric capacity for the fully expanded alloy (Ah/L) to the designed experiment results. The map is for the optimally performing end-members. Data points show compositions tested in coin cells. Dashed circle shows current best candidate ... 158
Figure III - 65: Effect of SLMP on delivered capacity for hard carbon/LiMn2O4 system 160
Figure III - 66: The 1st cycle capacity vs. voltage profiles for SiO/LiCoO2 baseline and SLMP-incorporated Cells .. 161
Figure III - 67: Cycleability of SiO/LiCoO2 baseline and SLMP-incorporated Cells 161
Figure III - 68: First cycle efficiency improvement for Si-containing/LiMnO4 system 161
Figure III - 69: Cycleability testing for Si-containing/LiMnO4 system ... 161
Figure III - 70: Anode specific capacity vs cycle. ... 164
Figure III - 71: Lithium surface after cycling. ... 164
Figure III - 72: Cells discharge profiles at 50th cycle at C/5 discharge rate with dual phase and single phase electrolytes. 164
Figure III - 73: Thermal ramp test of fully charged 0.25 Ah cell after 10th cycle. 165
Figure III - 74: Structural and electrical schemes for modeling of Dual-Phase electrolyte cell. 165
Figure III - 75: Current distribution over electrode area with terminal along the entire electrode (a) and with one point terminal connection (b). .. 165
Figure III - 76: Simulated Li anode thickness profiles after discharge at various electrodes length. 166
Figure III - 77: Simulated Li thickness non-uniformity after discharge as function of cathode substrate thickness. 166
Figure III - 78: Simulated Li anode thickness profiles at high depths of discharge and subsequent charge. 166
Figure III - 79: Simulated cell Area Specific Resistance vs Li Depths of Discharge. .. 167
Figure III - 80: a) Anode and cathode with terminals; b) 2.5 Ah cell. .. 167
Figure III - 81: Dual-Phase electrolyte anode structure. .. 168
Figure III - 82: a) 2.5 Ah format Dual-Phase Electrolyte cell discharge capacity vs cycle; b) 2.5 Ah format Dual-Phase Electrolyte cell 5th cycle discharge profile. .. 168
Figure III - 83: Thermal ramp test of fully charged 2.5 Ah cells with and w/o Dual-Phase Electrolyte. 168
Figure III - 84: Cycle Performance of BASF NCM 111 and BASF NCM424 at Room Temperature 172
Figure III - 85: Cycle Performance of BASF NCM 111 and BASF NCM 424 at 45°C 172
Figure III - 86: BASF Grade Comparisons .. 172
Figure III - 87: Cycle Performance of BASF HE-NCM at Room Temperature 173
Figure III - 88: 18650 type cells made of Silicon/CNF/graphene platelet based anode and LiFePO₄ cathode. 176
Figure III - 89: Rate performance (top) and low temperature performance (-20°C, bottom) of 18650 cells made of our silicon-based anode. ... 176
Figure III - 90: Schematic of Composite Nanofiber Anode. ... 179
Figure III - 91: Cycling performance of Si/C nanofiber anodes with different Si particle sizes. Si content in PAN precursor: 15 wt %; carbonization temperature: 700°C; electrolyte: 1 M LiPF₆ in EC/EMC; and current density: 50 mA g⁻¹. ... 179
Figure III - 92: Cycling performance of Si/C nanofiber anodes from 10 wt % Si/PAN with two different surfactants: CTAB and NaD. Surfactant concentration: 0.01 mol/L; electrolyte: 1 M LiPF₆ in EC/EMC; and current density: 100 mA g⁻¹. .. 180
Figure III - 93: Cycling performance of Si/C nanofiber anodes from 10 wt % Si/PAN with different concentrations of surfactant NaD. Electrolyte: 1 M LiPF₆ in EC/EMC; and current density: 100 mA g⁻¹. ... 180
Figure III - 94: Cycling performance of Si/C nanofiber anodes prepared from 20 wt % Si/PAN using different carbonization temperatures. Electrolyte: 1 M LiPF₆ in EC/EMC; and current density: 50 mA g⁻¹. ... 180
Figure III - 95: Photographs of different electrospinning machines and their spinning processes. (A) Lab-scale electrospinning device; (B) Elmarco’s NanospiderTM electrospinning unit; and (C) Yflow’s eSpinning unit. 181
Figure III - 96: Cycling performance of Si/C nanofiber anodes prepared from lab-scale electrospinning device, Elmarco’s NanospiderTM electrospinning unit, and Yflow’s eSpinning unit. Si content in Si/PAN precursor: 10 wt %; electrolyte: 1 M LiPF₆ in EC/EMC; and current density: 100 mA g⁻¹. ... 181
Figure III - 97: Cell discharge voltage versus specific capacity for Si/C nanofiber anodes in 18650 cells at different discharge currents at room temperature. Si content in Si/PAN precursor: 10 wt % ... 181
Figure III - 98: Cycling performance of Si/C nanofiber anodes prepared from 20 wt % Si/PAN precursor. First two cycles: full charge/discharge (cut-off voltages: 0.05 – 2.5 V). Following cycles: 70% state-of-charge swing, i.e., changing the current polarity: 1) capacity reaches 70% of first-cycle capacity, or 2) voltage reaches cut-off values: 0.05 – 2.5 V. Electrolyte: 1 M LiPF₆ in EC/EMC; and current density: 50 mA g⁻¹. ... 182
Figure III - 99: LFP – graphite cell rebalancing using ANL-RS2. Top trace: Voltage of 2-cell series. Bottom traces: Voltages of each individual cell, initially at 40% and 80% states-of-charge. ... 184
Figure III - 100: FEA models for cylindrical and prismatic 33Ah cells.. 188
Figure III - 101: Surface temperature profiles for the cylindrical and prismatic cell geometries shown in Figure III - 100, at power values close to the threshold power conditions. ...188

Figure III - 102: Simulation results showing the effect of the choice of anode material on thermal runaway. The plot on the left shows the cell surface temperature time dependence for the two different anode sub-models shown on the right. ...189

Figure III - 103: Photographs of key equipment for fabricating custom Li-ion cells ...189

Figure III - 104: Battery remaining capacity at year 8 for hot-climate geographic scenario with battery temperature fixed at 28°C ambient and nightly charging. ...204

Figure III - 105: Remaining capacity at the end of 8 years for various BTM and charging scenarios. Colored bars show average result for all 782 drive cycles; Error bars show result for 5th and 95th percentile drive cycles.204

Figure III - 106: Difference in life outcomes for opportunity charging behavior versus nightly charging behavior (aggressive-cooling, hot-climate scenario). A slight majority of PHEV40 drive cycles benefits from frequent charging, owing to shallower cycling. ...205

Figure III - 107: Overview of battery ownership model...208

Figure III - 108: Sensitivity of vehicle levelized cost ratio to design variables ...208

Figure III - 109: Projected initial battery discount due to second use ...211

Figure III - 110: Projected second use battery sale price ...211

Figure III - 111: Projected second use battery sale price ...211

Figure III - 112: Allocation of second use batteries by year and application ...212

Figure III - 113: Where Recycled Materials Could Enter Battery Production ...215

Figure III - 114: Smelting Flow...216

Figure III - 115: Analysis results of simulated HEV ESS power pulses over the US06 drive cycle (corresponding to an in-use ESS energy window of roughly 165 Wh). ...219

Figure III - 116: HEV ESS power pulses over the UDDS already fall within the reduced power levels under consideration. ...219

Figure III - 117: Indicates the amount of the large US06 regen power pulse that would cut off by capping the 10-sec charge power level at 20 kW. ...220

Figure III - 118: ESS power pulse analysis over the US06 cycle for the restricted discharge power HEV model. ...220

Figure III - 119: Calculating the energy for which both power targets must be simultaneously met, based on a reduced 10-sec charge power target of 20 kW. ...220

Figure III - 120: Three example results from BatPaC v1.0 for an HEV (LMO/Gr), PHEV40 (NMC441/Gr) and EV100 (NMC441/Gr). ...223

Figure III - 121: Year 2020 total cost breakdown, USS4611 (top), price (mid), and materials (bottom) of an integrated PHEV40 battery pack based on 96 series connected cells using high performance Li_{1.05}(Ni_{4/9}Mn_{4/9}Co_{1/9})_{50/97}O_{2} vs Graphite for 17 kWh of total energy and 65 kW power223

Figure III - 122: Potential cost savings from moving to large format cells and achieving large electrode thickness. These changes will require engineering advances to meet life goals. Calculation for a “Chevrolet Volt like” battery: Li_{1.06}Mn_{1.94}O_{2} vs Graphite 17 kWh and 100-kW. ...224

Figure III - 123: Cost of additional designed power in a PHEV20 battery designed to achieve power at 80% of open circuit voltage. The inflection point in the curve is due to a maximum electrode thickness limitation, here set at 100 µm. Additional power may be inexpensive or free depending on the cell chemistry selected. ...224

Figure III - 124: Path forward for lithium based batteries. The second half of the curve represents cell chemistries that may or may not ever reach a state of commercialization. Increasing in both positive and negative electrode capacities are necessary, along with an increasing cell voltage. ...225

Figure III - 125: Average, relative C/3 capacity vs. cycle count. As expected, the fit of the C/3 energy data yielded a similar equation with the same slope. ...227

Figure III - 126: Average, relative resistance at 80% DOD vs. cycle count. ...227

Figure III - 127: Average, relative peak power at 80% DOD calculated from the three USABC equations vs. cycle count. ...227

Figure III - 128: Average discharge capacity for BLE Sanyo cells. ...231
Figure III - 129: Average power fade for BLE Sanyo cells... 231
Figure III - 130: Average HCSD measurement at 50°C for the no-load cell group................................. 232
Figure III - 131: HCSD real impedance correlated to the HPPC discharge resistance............................... 233
Figure III - 132: Typical effect of temperature on lithium ion battery resistance rise............................... 235
Figure III - 133: CPI 400-Volt Battery Pack... 235
Figure III - 134: Qualion Li-Ion Module ... 235
Figure III - 135: Comparison of Charge Sustaining cycling to calendar life testing.. 236
Figure III - 136: Cycle life aging as a function of temperature... 236
Figure III - 137: Comparison of aging from calendar life and cycle life, with different rest times in between cycles...... 236
Figure III - 138: Calendar life aging as a function of state of charge.. 236
Figure III - 139: Typical effect of temperature for EV batteries ... 237
Figure III - 140: Typical effect of temperature for PHEV batteries.. 237
Figure III - 141: Typical effect of temperature for HEV batteries... 238
Figure III - 142: Cell voltage (blue) and applied current (green) during a 2C overcharge test of a COTS 12 Ah cell.... 240
Figure III - 143: Cell voltage (blue) and cell skin temperature (red) during a 2C overcharge test of a COTS 12 Ah cell. . 240
Figure III - 144: Still frame photograph of the failure event of a COTS 12 Ah cell subjected to a 2C overcharge abuse test in an 8 f3 enclosure. ... 241
Figure III - 145: Total available power (W) for a series of 18650 lithium-ion cells that are fresh (blue) and that have been calendar aged at 60°C for 1 and 2 months (red and green, respectively).. 241
Figure III - 146: ARC profiles plotted as heating rate as a function of temperature for the fresh cell (blue) and 20% faded aged cell (green) populations... 241
Figure III - 147: Test Element 3 Path Dependence Study (Sanyo Y) – Design of Experiment for Thermal Cycling Conditions ... 244
Figure III - 148: The Path Dependence of Capacity Loss Data... 245
Figure III - 149: Accelerated Aging at High SOC Operations ... 245
Figure III - 150: Two Stage Capacity Degradation Curves showing Loss of Active Lithium............................. 246
Figure III - 151: Performance Degradation Curves for Different Temperatures – Capacity Plots......................... 246
Figure III - 152: Performance Degradation Curves for Different Temperatures – Energy/Power Plots.................... 246
Figure III - 153: Heat generation from a PHEV cell... 249
Figure III - 154: Heat generation from a PHEV cell under low current discharge... 249
Figure III - 155: Efficiency curve for an energy-storage system at the beginning of life and after limited cycling....... 249
Figure III - 156: Infrared image of a cell under constant current discharge... 249
Figure III - 157: Cell voltage (open circuit) as a function of temperature for cells with gallium (blue trace) and bismuth-alloy (red trace) defect particles ... 250
Figure III - 158: Multi-scale physics in battery modeling from molecular modeling to pack and system level modeling. 252
Figure III - 159: CT image (left) and 2D x-ray image (right) of lithium-ion cells built with internal heaters................. 253
Figure III - 160: Cell voltage and temperature during an internal heater test... 253
Figure III - 161: Cell voltage and temperature during a blunt rod test in the axial direction................................. 254
Figure III - 162: Still photograph of cell shorting and runaway during the axial blunt rod test.............................. 254
Figure III - 163: Cell voltage and temperature during blunt rod tests in the transverse direction resulting in a (top) soft short and (bottom) hard short for the cells from the same manufacturer and lot .. 254
Figure III - 164: CT image of a cell post transverse blunt rod test showing can breech resulting in a soft short......... 255
Figure III - 165: ISC schematic (top picture) and ISC placed in a cell (bottom picture).. 257
Figure III - 166: Four Elements of the CAEBAT Activity... 260
Figure III - 168: Schematic of the modeling framework and interactions with other tasks within the CAEBAT program and external activities. ... 265

Figure III - 169: Coupling scenarios in battery modeling. We will start with one-way and two-way loose coupling. In later years as needed moved towards two-way tight coupling with Picard and Full-implicit methodologies. 266

Figure III - 170: Schematic of the OAS modeling framework encapsulating the various components through component adapters and link to the battery state through the state adaptors. The collection of the different tools, adaptors, and OAS framework will give one realization of VIBE (Virtual Integrated Battery Environment). 266

Figure III - 171: Sample results from the coupled DualFoil/thermal calculations showing the Lithium ion concentration in the electrodes, Temperature, potential in the electrodes and electrolyte for an unrolled cell (not to scale) 266

Figure III - 172: a) Schematic of the interface between DAKOTA and OAS modeling framework and b) Sample temperature profiles of unrolled cell as a function of variations in thermal conductivity and heat capacity. 267

Figure III - 173: Battery Pack Design Tool Capability Areas ... 269

Figure III - 174: Battery Pack Design Tool Model Components ... 269

Figure III - 175: Schematic of the underlying modeling abstraction ... 272

Figure III - 176: Parameters used to describe the positive and negative electrodes in the host BDS code ... 272

Figure III - 177: Screenshots of spiral cells within STAR-CCM+ showing resolved current-carrying tabs ... 273

Figure III - 178: Cell resistance results for a study of positive tab position ... 273

Figure III - 179: Current density on the inner and outer sides of the negative current collector ... 273

Figure III - 180: Temperature (K) contours for the 15 Ah stack electrode design (SED) at 6C discharge rate: (left) t=100s, and (right) t=300s ... 275

Figure III - 181: Temperature contours (K) for the 3Ah rolled electrode design (RED) at 6C discharge rate: (left) t=100s, and (right) t=200s ... 275

Figure III - 182: Current density (A/m2) distribution for 3Ah RED at 6C discharge rate: (left) t=100s, and (right) t=200s ... 275

Figure III - 183: Separation of model domains corresponding to the length scales of physics resolved ... 277

Figure III - 184: Parallel and independent development of submodels in the MSMD framework ... 277

Figure III - 185: Schematic description of the 20-Ah stacked prismatic cell designs investigated (from Figure 3 in [1]) ... 279

Figure III - 186: Choices of models at each model domain (from Figure 4 in [1]) ... 279

Figure III - 187: Contours of temperature at nine cross-sectioned surfaces in cell composite volume at the end of 5C constant current discharge (from Figure 10 in [1]) ... 279

Figure III - 188: Contour of electrode plate ampere-hour throughput at the cell composite volume near bottom plane of the cells during 15min PHEV10 drive with the US06 cycle (from Figure 18 in [1]) ... 280

Figure III - 189: Schematics of wound cell jelly roll having two sets of electrode pairs on a single pair of current collector sheets ... 281

Figure III - 190: Schematics of wound cell jelly roll having two sets of electrode pairs on a single pair of current collector sheets ... 281

Figure III - 191: Steps to Convert an SEM Image to a computational mesh ... 284

Figure III - 192: Sample results from NREL’s simulations in actual electrode geometries: this model was built using an SEM image of an MCMB anode shown on the left; electrolyte distribution within a slice of the anode during overcharge is shown on the right. ... 284

Figure III - 193: Comparison of the dendrite shape and size over an irregular particle: the image on the left is for 1.2 M LiPF6 electrolyte in EC/EMC; the image on the right is for the same electrolyte in the presence of a hypothetical leveling agent ... 285

Figure III - 194: Comparison of overcharge reaction rates for different particle morphologies under 2-C rate charge to 200% ... 285

Figure III - 195: Effect of bulk properties of the electrolyte on the size of lithium dendrites during overcharge ... 286

Figure III - 196: Effect of poor wetting of the particle surface on the lithium plating current during overcharge ... 286

Figure IV - 1: An overview of the major activities in the Advanced Battery Development program 294
Figure IV - 12: Voltage profile of electrode at surface of electrode .. 303
Figure IV - 13: Current and voltage distribution around four probes .. 303
Figure IV - 14: Electrode conductivity of coating using polyester as substrate ... 304
Figure IV - 15: ASI of NCM electrode with and without carbon coating ... 304
Figure IV - 16: Analytical modeling of the Experimental data .. 305
Figure IV - 17: Electrode composition vs. overpotential at different discharge rates .. 305
Figure IV - 18: Cycling results of a Graphite/LiNi0.12Mn0.19O2 cell ... 307
Figure IV - 19: (a). Rate capability of HQ-1 at different loadings, (b). Comparison of rate capabilities of different materials, (c). rate capability of different materials normalized with their specific surface area. .. 307
Figure IV - 20: Voltage profile of Li/50 wt% SiO-50 wt% Sn30Co30C40 half-cell at the 1st, 5th, 25th, 50th, and 100th cycles ... 310
Figure IV - 21: Rate capability of Li/50 wt% MoO2-50 wt% Sn30Co30C40 half-cell .. 310
Figure IV - 22: Cycle performance of 50wt.% SiO-50wt.% Sn30Co30C40 prepared by Spex-milling and ultrahigh energy milling .. 311
Figure IV - 23: Charge and discharge voltage profile of Cu6Sn5 versus lithium ... 312
Figure IV - 24: Volumetric capacity density of Cu6Sn5-based intermetallic alloys compared against graphite 313
Figure IV - 25: Photo of rectangular bars cast from various intermetallic alloys used for mechanical property studies. 314
Figure IV - 26: SEM photo of optimum Cu6Sn5 powder based on mechanical properties for discharge to Li2CuSn 315
Figure IV - 27: (a) Scanning electron micrographs of autogenically as-prepared carbon spheres, and (b) as-prepared carbon spheres heated to 2800°C .. 318
Figure IV - 28: Raman spectra of (a) as prepared CS (top), CS-24 (middle) and CS-28 (bottom). 319
Figure IV - 29: (a) Capacity vs. cycle number of Li/CS cells (0.24 A/g (~1C) rate); 1.5 V – 10 mV); (b) Capacity vs. cycle number of Li/CSP-24 cells (0.24 A/g (~1C) rate); (c) Capacity vs. cycle number of Li/CS-28 cells (0.24 A/g (~1C) rate) and corresponding discharge-charge profiles for the 1st and 2nd cycles .. 319
Figure IV - 30: LTO/LMO pouch cells before (right) and after (left) 80 days of aging at 63°C. The electrolyte is 1.2 M LiPF6 in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) at ratio of 3:7 .. 322
Figure IV - 31: Results of GC-MS analysis showing majority of the gas is H2 .. 322
Figure IV - 32: Experimental set-up to measure the generated gas by reaction of lithiated LTO with electrolyte 323
Figure IV - 33: Gas evolution progress for different lithium salts in propylene carbonate: ethyl methyl carbonate: diethyl carbonate: dimethyl carbonate (1:1:1:1). LiBF4 produce less gas than LiPF6 and Air Products salt (Li2B12F12H3) 323
Figure IV - 34: Proposed reaction mechanism. However, more work needs to be done to address salt effect 323
Figure IV - 35: The positive impact of our approach to significantly reduce the gas evolution in LTO/LiMn2O4 cells aged at 55°C using chlorosilane treatment on Li4Ti5O12 .. 324
Figure IV - 36: XRD profile and SEM images of Li1.2Ni0.1Mn0.6O2 ... 326
Figure IV - 37: Charge and discharge capacity of Li1.2Ni0.1Mn0.6O2 (a: x=1.03, b: x=1.0, c: x=0.97, d: x=0.94, e: x=0.91, f: x=0.88). 326
Figure IV - 63: Top: Cycling data of lithium half cells with layered-layered NMC-ANL, LiFePO₄ and blended cathodes. Bottom: Rate capability of lithium cells containing a ‘layered-layered’ ANL-NMC cathode, with and without a LiFePO₄ component. 348

Figure IV - 64: Schematic drawing of CSTR system used for this experiment. 350

Figure IV - 65: Particle size distribution of samples collected at different reaction times. 350

Figure IV - 66: SEM images of samples collected at different reaction times. 351

Figure IV - 67: Average particle size (D50) evolution as a function of time. 351

Figure IV - 68: EDXS of collected samples. 352

Figure IV - 69: X-ray diffraction patterns of samples from different collection times. 352

Figure IV - 70: X-ray diffraction patterns of Li₁₅(Ni₀₃Mn₀₇)O₂ₓ₊₁. Inset is SEM image. 352

Figure IV - 71: Cycling performance of Li₁₅(Ni₀₃Mn₀₇)O₂ₓ₊₁ between 2-4.6 V. 353

Figure IV - 72: Synthesis of the methyl ester derivative of GC. 355

Figure IV - 73: Synthesis of the GCMC compound. 355

Figure IV - 74: Cycling and EIS data from NCA//Graphite cells comparing the effects of 5wt% GCMC additive in the baseline electrolyte. 356

Figure IV - 75: Cycling data from NCA//Graphite coin cells containing 1.2M LiPF₆ in GCMC:EMC=1:6 (by wt%). 356

Figure IV - 76: Substituted carboxylic ester-based compounds that have been identified as electrolyte additives. 357

Figure IV - 77: Cycling and EIS data from NCA//Graphite cells comparing the effects of various additives with that of the baseline electrolyte. 357

Figure IV - 78: Nitrogen-containing heteroaromatic-substituted carboxylic esters. 357

Figure IV - 79: Cycling data from NCA//Graphite cells with and without the electrolyte additives shown in Figure IV - 78. 358

Figure IV - 80: Degree of unsaturation (DU) of representative SEI additives. 360

Figure IV - 81: Capacity retention profiles of MCMB/ Li₁₅(Ni₀₃Mn₀₇)O₂ₓ₊₁ coin cells showing the impact of OBD additive on capacity retention. The cells were cycled at 55°C, and cut-off voltages were 2.7 and 4.2 V. 361

Figure IV - 82: Differential capacity profiles of MCMB/NCM cells in Gen 2 electrolyte with 0 to 1 wt% OBD. The cells were cycled at 55°C. The charge rate was C/10 with cut-off voltage 3 ~ 4 V. 361

Figure IV - 83: Nyquist plots for MCMB/NCM cells containing different amounts of OBD in electrolyte of 1.2M LiPF₆ with ethylene carbonate/diethyl carbonate (3:7 weight ratio). 362

Figure IV - 84: FTIR spectra of MCMB electrodes obtained from MCMB/NCM coin cells containing different amounts of OBD in electrolyte of 1.2M LiPF₆ with EC/DEC (3:7 weight ratio) after formation cycles. 362

Figure IV - 85: Proposed ethylene phosphate-based compounds as potential SEI additives. 363

Figure IV - 86: 1H NMR of ethylene methyl phosphate. 363

Figure IV - 87: Ionic conductivity vs. temperature relationship of 1.0M LiPF₆ TMS/1NM3 electrolyte. 365

Figure IV - 88: (A) Typical LMO/LTO cell charge and discharge profiles using TMS/ethyl methyl carbonate (EMS) electrolyte in a ratio of 5/5 in weight; (B) Cycling performance with high current rate using of TMS/EMS electrolyte in LMO/LTO cell. 366

Figure IV - 89: NMC/MCMB cell cycling performance using 1.0M LiPF₆ TMS/1NM3 (A) without additive, (B) with 2% VC, (C) with 2% LiDfOB, and (D) with 4% LiDfOB. 366

Figure IV - 90: Differential capacity profiles LiNi₀₃Co₀₂Mn₀₂O₄ (NMC)/MCMB cells with different concentrations of LiDfOB as additive in 1.0M LiPF₆ TMS/1NM3 5/5 electrolyte. 367

Figure IV - 91: Fluorinated Compounds as High Voltage Electrolytes. 367

Figure IV - 92: CV profiles of LNMO/Li half cell with different electrolytes (A, top, 1.2 M LiPF₆ in EC/EMC 3:7) (b, lower left, 1.2 M LiPF₆ in EC/EMC/D2 2:6:2) and (c, lower right, 1.2 M LiPF₆ in EC/DME/D2 2:6:2). 368

Figure IV - 93: Cycle performance of LNMO/LTO cell with fluorinated electrolytes 1.2 M LiPF₆ in EC/EMC/D2 2:6:2 and 1.2 M LiPF₆ in EC/EMC/D2 2:5:3 at room temperature and high temperature (55°C). 368

Figure IV - 94: Capacity as a function of cycle number plots at room temperature for LiNi₀₃Mn₀₂O₄/Li half cells in 1 M LiPF₆/EC/EMC (3:7 w/o) with various fluorinated phosphate esters of different fluorine/hydrogen (F/H) ratios. 370
Figure IV - 95: A comparison of capacity retention of LiNi_{0.5}Mn_{1.5}O_{4}/LiFePO_{4} A123 full cells in 1.2 M LiPF_{6}/EC:EMC (3:7 v/o) with and without 5 mM HFIP versus cycle number at 1C between 3.5 and 5.0 V at room temperature. 371

Figure IV - 96: A comparison of capacity retention of LiNi_{0.5}Mn_{1.5}O_{4}/LiFePO_{4} A123 full cells in 0.8 m LiPF_{6}/EMC with and without 5 mM HFIP versus cycle number. 371

Figure IV - 97: Mössbauer spectrum of Fe-substituted LiCoPO_{4}. 371

Figure IV - 98: Long term cycling of Fe-substituted LiCoPO_{4} against Li in 1 m LiPF_{6}/EC:EMC (3:7 w/o) with 1% HFIP additive. 372

Figure IV - 99: The lowest barrier pathway for oxidative decomposition reaction of PC-PF_{6}- and PC-ClO_{4}-. 372

Figure IV - 100: EIS characteristics of MCMB anodes from MCMB-LiNi_{0.5}Co_{1-X}O_{2} cells containing 1.0M LiPF_{6} EC+EMC+MB (20:20:60 vol %) electrolytes with and without additives after high temperature cycling. 377

Figure IV - 101: EIS characteristics of LiNi_{0.5}Co_{1-X}O_{2} cathodes from MCMB-LiNi_{0.5}Co_{1-X}O_{2} cells containing 1.0M LiPF_{6} EC+EMC+MB (20:20:60 vol %) electrolytes with and without additives after high temperature cycling. 377

Figure IV - 102: Tafel polarization measurements performed at 23°C on graphite electrodes in contact with different MB-based electrolytes. 378

Figure IV - 103: Discharge rate characterization of a LiFePO_{4}-based A123 cell at -40°C using high rate (4.5C to 11.2C). Cells contains 1.0M LiPF_{6} EC+EMC+MB (20:20:60 vol %) + 2% VC. Cell was charged at room temperature prior to discharge. 379

Figure IV - 104: Discharge rate characterization of a LiFePO_{4}-based A123 cell at -40°C using high rate (4.5C to 11.2C). Cells contains 1.0M LiPF_{6} EC+EMC+MB (20:20:60 vol %) + 4% FEC. Cell was charged at room temperature prior to discharge. 379

Figure IV - 105: Cycle life performance of LiFePO_{4}-based A123 cells containing various electrolytes at +40°C and +50°C. 380

Figure IV - 106: Variable temperature cycling (+40° to -20°C) of LiFePO_{4}-based A123 cells containing 1.20M LiPF_{6} EC+EMC+MB (20:20:60 vol %) + 2% VC and the baseline electrolyte. 380

Figure IV - 107: Cycle life performance of LTO/ LMNO cells containing various electrolytes. 381

Figure IV - 108: General Heterocyclic Phosphazene Structure. 383

Figure IV - 109: Electrochemical Properties of SM-series Phosphazene Additives. 384

Figure IV - 110: Summary of Stability Testing for Selected SM Compounds. 385

Figure IV - 111: Early life Capacity Performance of Coin Cells: (A) Cell Polarization Evident at Highest Cycling Rate and Highest Additive Content (10%), and (B) Cell Polarization for the NMC/graphite set. 386

Figure IV - 112: Results of DFT modeling of INL Early Ionic Liquid Phosphazene Additive. 387

Figure IV - 113: Expansion of INL Capabilities to Synthesize Phosphazene Compounds. 387

Figure IV - 114: Impact of electronic conductivity on particle performance. 390

Figure IV - 115: Impact of particle shape on performance. 390

Figure IV - 116: Li-ion cell discharge capacity as a function of electrode thickness. 391

Figure IV - 117: Cell and electrode impedance. 391

Figure IV - 118: a) assumed stiff pouch cell format b) schematic of baseline manufacturing facility. 395

Figure IV - 119: Calculated (solid line) and experimental (open circles) area-specific impedance (ASI) for a NCA/Graphite couple with varying electrode loading. Model captures the physical origin of the ASI as a function of active material at constant C-rate. 395

Figure IV - 120: Calculated (solid line) and experimental (open circles) area-specific impedance (ASI) for a NCA/Graphite couple operated at increasing C-rate. The model is able to capture physical limitations within battery. 396

Figure IV - 121: a) Battery price and b) mass as a function of demanded power (W) and energy (kWh) for an NMC333/Graphite couple. High power batteries with too low of energy (active material) will result in an undesirable (expensive) battery: an optimum design point exists. 396

Figure IV - 122: Price of LMR-NMC/Graphite. 397

Figure IV - 123: AC impedance obtained on a NCA/graphite cell with a Li-Sn reference electrode. The data were obtained at 30°C, 3.75V full cell voltage, in the 100KHz-10 mHz frequency range. 399
Figure IV - 124: (a) Capacity/capacity fade data obtained from capacity-voltage plots, and (b) impedance data from HPPC tests, from a cycle-life aged cell. All data were acquired at 30°C. ... 400
Figure IV - 125: Capacity-voltage, and corresponding dQ/dV, plots from harvested electrode vs. Li cells. 400
Figure IV - 126: X-ray diffraction data obtained on the positive electrode .. 401
Figure IV - 127: Raman spectroscopy obtained on fresh and harvested negative electrodes. 401
Figure IV - 128: First 2 cycles of a Li-metal cell containing a Li1.2Ni0.15Co0.1Mn0.55O2–based positive electrode. 401
Figure IV - 129: Electrochemical cycling data obtained on a Li-metal cell containing a Li1.2Ni0.15Co0.1Mn0.55O2–based positive electrode. ... 402
Figure IV - 130: HAADF-STEM image of Li1.2Co0.4Mn0.4O2, that reveal the coexistence of Li2MnO3-like (dot contrast) and LiCoO2-like (continuous contrast) areas within (0001) transition metal planes. ... 404
Figure IV - 131: (a) Schematic model structure of TM plane in Li1.2Co0.4Mn0.4O2 showing coexistence of Co and LiMn2 domains. Big blue and magenta spheres represent Co and Mn atoms, respectively; small yellow spheres represent Li atoms. In-plane sections of the rhombohedral (R) and monoclinic (M) unit cells are indicated in the figure. Periodic boundary conditions connect the top and left edges of the figure with the bottom and right edges, respectively. Therefore, the particular model shown contains only one Co and two LiMn2 separate clusters. Additionally, projected atomic columns along <1-100> (e.g. left to right) contain approximately equal amounts of Co and X atoms, where X varies across columns following a Mn-Mn-Li sequence consistent with STEM results. (b) Illustration of the early stages of model generation showing one LiMn2 and one Co cluster randomly placed on the board. Empty sites are indicated by faded colors. .. 405
Figure IV - 132: a) Charge-discharge profiles and (b) dQ/dV plots of Li(Li0.2Mn0.4Co0.4)O2 vs. Li cell between 2 and 4.7V. .. 405
Figure IV - 133: X-ray diffraction data on Li(Li0.2Mn0.4Co0.4)O2 samples. Data from LiCoO2 and Li2MnO3 are shown for comparison. .. 406
Figure IV - 134: XAS data on as-prepared and cycled Li(Li0.2Mn0.4Co0.4)O2 samples. Data from LiMn2O4 are shown for comparison. .. 406
Figure IV - 135: Z-contrast STEM (HAADF) image from cycled Li(Li0.2Mn0.4Co0.4)O2 samples. ... 406
Figure IV - 136: In situ Raman of PF6- intercalation in carbon black .. 409
Figure IV - 137: CVs of carbon black electrodes before (A) and after (B) surface treatment with Ar/H2 at 900°C 409
Figure IV - 138: CV's of pristine Denka carbon black (a), and oxidized Denka carbon black 410
Figure IV - 139: Modeling Aging Cells as batch reactors ... 414
Figure IV - 140: C/25 Capacity Fade Curve .. 414
Figure IV - 141: C/1 Capacity Fade Curve .. 414
Figure IV - 142: Seasonal Temperature Profile Used for Aging Simulation (Phoenix) ... 415
Figure IV - 143: HEV cycle-life results for Gen2 cells aging (Phoenix monthly temperatures)............................... 415
Figure IV - 144: HEV calendar-life results for Gen2 cells aging (Phoenix monthly temperatures) 415
Figure IV - 145: PD behavior in C/1 capacity loss in varying the SOC over four year simulation (Phoenix) 415
Figure IV - 146: PD simulations with thermal management scheme for Phoenix – C/25 Capacity Fade 415
Figure IV - 147: PD simulations with thermal management scheme for Phoenix – C/1 Capacity Fade 415
Figure IV - 148: Bar graph of AE activity for each charge and discharge step. A clear majority of events were observed during charging and a fatigue type AE activity onset was seen. .. 418
Figure IV - 149: Bar graph of AE activity binned by cell potential. Three activity regions were noted including those related to Ni oxidation (4.7V), Mn Jahn Teller distortion (2.7V), and cation ordering (4.0V). The 4.7V group showed the most dependence on cycle number and is likely the source of the fatigue onset type behavior. 418
Figure IV - 150: Events registered with (a) 9.9 mA/g cycling and (b) 30 mA/g cycling. CCCV 2.4-4.8V. Note the much larger number of cracking events with rapid charging mostly occurring at delithiation. (c) Detailed view of individual events during charging/discharging at high rate. ... 419
Figure IV - 151: Electrochemical hold and cracking events during the hold time. ... 419
Figure IV - 152: An isoplot of in situ XRD data collected during the cycling of a tin thin film electrode. Clear transitions between the white tin, Li$_2$Sn, β-LiSn, and Li$_2$Sn$_2$ phases are seen... 420
Figure IV - 153: Equipment layout in Cell Fabrication Facility. .. 422
Figure IV - 154: “Reverse comma” coater with dual drying zones and intermittent coating capabilities. ... 423
Figure IV - 155: Hot roll press capable of 1.5 tons/cm force and 120°C roll temperature... 423
Figure IV - 156: High energy/shear planetary mixer from Ross with a 2 liter chamber capacity... 423
Figure IV - 157: Cell Formation and Cycling Lab... 423
Figure IV - 158: First cell build and test fixture used... 424
Figure IV - 159: Capacity summary of first cell build made by the Cell Fabrication Facility... 424
Figure IV - 160: HPPC impedance summary of first cell build made by the Cell Fabrication Facility... 424
Figure IV - 161: HPPC impedance summary of second cell build made by the Cell Fabrication Facility... 425
Figure IV - 162: Relative ASI vs. calendar time... 428
Figure IV - 163: Relative C/1 capacity vs. calendar time... 428
Figure IV - 164: Relative C/25 capacity vs. calendar time... 428
Figure IV - 165: TR-XRD of charged Li$_{0.33}$Ni$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$ (G2) during heating.. 431
Figure IV - 166: TR-XRD of charged Li$_{0.33}$Ni$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$ (G3) during heating.. 431
Figure IV - 167: SAEDP of an overcharged Li$_{0.125}$Ni$_{0.125}$Co$_{0.125}$Mn$_{0.6}$O$_2$ particle. (b-c) Dark field images using reflections of (b) 10001 and (c) 2-20S. The dash lines indicate the same position in (b) and (c). (d) HRTEM image from the edge of the particle. The insets at the right-middle and the right-bottom are the diffractograms from the red and blue circled areas, respectively... 432
Figure IV - 168: Thermal decomposition mechanism of overcharged Li$_{1.2}$Ni$_{0.13}$Co$_{0.07}$Mn$_{0.6}$O$_2$ (Gen 2) and Li$_{1.2}$Ni$_{0.13}$Co$_{0.07}$Mn$_{0.6}$O$_2$ (Gen3) particles during heating... 432
Figure IV - 169: Thermal stability study of fully charged Li$_{1.2}$Ni$_{0.13}$Co$_{0.07}$Mn$_{0.6}$O$_2$ electrode without Al$_2$O$_3$ surface coating using ALD.. 433
Figure IV - 170: Thermal stability study of fully charged Li$_{1.2}$Ni$_{0.13}$Co$_{0.07}$Mn$_{0.6}$O$_2$ electrode with Al$_2$O$_3$ surface coating using ALD. The phase transition temperature to Fm3m phase is increased by almost 100°C comparing to the uncoated electrode.. 433
Figure IV - 171: Raman spectroscopy of four graphitic anode materials.. 437
Figure IV - 172: XRD patterns of four graphitic anode materials using high-energy X-ray beam (λ = 0.10978 Å).. 438
Figure IV - 173: DSC profile of thermal decomposition of delithiated NMC with the presence of (a) EC/EMC; (b) EC; (c) EMC; (d) TBPMBTFSi; (e) EC/EMC/LiPF$_6$; (f) EC/LiPF$_6$; (g) EMCLiPF$_6$; and (h) TBPMBTFSi/LiPF$_6$.. 439
Figure IV - 174: In situ high energy X-ray diffraction setup to investigate the thermal decomposition of delithiated cathode during thermal ramping.. 439
Figure IV - 175: Cyclic voltammogram of 0.01M ANL-2 in 1.2 M LiPF$_6$ in EC/EMC (3:7) at various rates using a Pt/Li/Li three-electrode system.. 440
Figure IV - 176: Voltage and capacity profiles of MCMB/LiFePO$_4$ cells containing 0.4 M ANL-2 in Gen 2 electrolyte during the course of 0-960 h. Charging rate is C/2 and overcharge ratio is 100%.. 440
Figure IV - 177: Charge/discharge capacity of a LiTi$_{1/2}$O$_2$/LiFePO$_4$ lithium-ion cell during overcharge test................................. 441
Figure IV - 178: Gas pressure as a function of temperature for neat EC (blue) and 1.2 M LiPF$_6$ (red) samples in a bomb calorimetry experiment.. 443
Figure IV - 179: Calorimetry measurements of moles of gas evolved per mole of electrolyte for neat carbonate solvents and LiPF$_6$-based electrolyte solutions.. 443
Figure IV - 180: ARC profiles of NMC111 cells with 1.2 M LiPF$_6$ in EC/EMC (3:7) and EC:PC:DMC (1:1:3) electrolytes.. 444
Figure IV - 181: DSC profiles of NMC433 and NMC111 at 4.3 V in 1.2 M LiPF$_6$ in EC:EMC (3:7) and 1.0 M LiF/ABA in EC:EMC (3:7).. 444
Figure IV - 182: ARC profiles for NMC433 18650 cells in 1.2 M LiPF$_6$ in EC:EMC (3:7) and 1.0 M LiF/ABA in EC:EMC (3:7) at 4.3 V.. 445
Figure IV - 183: Photograph of 18650 cells built at SNL ... 445
Figure IV - 184: Voltage as a function of capacity (Ah) showing charge and discharge capacity curves for NMC111 18650 cells .. 445
Figure IV - 185: Percent capacity retention as a functional of cycle number for an NMC111 18650 cell .. 445
Figure IV - 186: (a) P3BT nanorods and (b) P3BT nanotubes prepared by electro-templating. Images were recorded after the removal of AAO templates .. 448
Figure IV - 187: (a) Voltage profile of the P3BT nanotube/AAO composite at the indicated current densities and (b) comparison of the sustainable current densities of the various P3BT composites .. 448
Figure IV - 188: SEM image of porous PFO polymer fibers prepared by an electrospinning method .. 449
Figure IV - 189: Galvanostatic oxidation of the PFO fibers in 1M LiPF6 in 1:1 EC: PC. The image was taken under an optical microscope at 100x magnification .. 449
Figure IV - 190: Cyclic voltammetry of PFOP in 1M LiPF6 in 1:1 EC: PC for 30 cycles: a) high voltage and b) low voltage region. Scan rate was 5 mV/s .. 450
Figure IV - 191: Variable rate charge-discharge curves for unprotected and protected Li/Li1.05Mn1.95O4 “Swagelok-type” cells .. 450
Figure IV - 192: Polymer-protected Li/Li1.05Mn1.95O4 pouch cells: a) voltage profile comparison between the two types of pouch cells and b) charge-discharge cycling of a “sandwich-type” pouch cell .. 451
Figure IV - 193: Cathode capacity after preliminary process optimization .. 454
Figure IV - 194: Coin cell cycle performance .. 454
Figure IV - 195: Precursor particle growth issue .. 455
Figure IV - 196: Top view of the glove box. GB-1 is on the reader’s left; GB-2, on the right .. 459
Figure IV - 197: Post-test analysis workflow diagram. Rectangular boxes indicate processes and samples. Ovals indicate analysis techniques .. 459
Figure IV - 198: Conoco Philips A12 Graphite Electrode made by the cell fabrication facility .. 462
Figure IV - 199: Toda HE5050 NMC Electrode made by the cell fabrication facility .. 462
Figure IV - 200: Rate Capability Study of industrially made electrodes and cell fabrication facility made electrodes .. 463
Figure IV - 201: HPPC testing of industrially made electrodes and cell fabrication facility made electrodes .. 463
Figure IV - 202: Li1.2Ni0.3Mn0.6O2.1 Powder .. 463
Figure IV - 203: Li1.2Ni0.3Mn0.6O2.1 As-Coated Electrode Surface .. 463
Figure IV - 204: Li1.2Ni0.3Mn0.6O2.1 As-Coated Electrode Cross Section ... 464
Figure IV - 205: Li1.2Ni0.3Mn0.6O2.1 Final Electrode Surface .. 464
Figure IV - 206: Li1.2Ni0.3Mn0.6O2.1 Final Electrode Cross Section .. 464
Figure IV - 207: Li1.2Ni0.3Mn0.6O2.1 Smaller sized powder .. 465

Figure V - 1: BATT Overview ... 467
Figure V - 2: BATT Focus Areas ... 468
Figure V - 3: Morphologies of stoichiometric LiFePO4 seen as a function of reaction time and their corresponding electrochemical performance .. 471
Figure V - 4: (top) Energy barriers for Li migration in LiNi0.3Mn1.7O4. (bottom): Capacity at high rates for cathodes made with micron sized LiNi0.3Mn1.7O4 .. 472
Figure V - 5: Fragment of the crystal structure of Li12Si2 showing the Si4 stars and the Si5 rings (black) and Li atoms in light/dark blue .. 472
Figure V - 6: Experimental one-pulse spectrum (top) and 29Si 2D INADEQUATE NMR spectrum of Li12Si2 at 233 K .. 472
Figure V - 7: Stability of the generic A3M(YO3)(XO4) compositions (with A=Na, Li, M= and Y=C, B) in the sidorenkite crystal structure. The color is a measure of thermodynamic stability. Light (dark) colors indicate instability (stability) .. 473
Figure V - 8: SEM images of (a) the nanoporous LiCoPO4/C particles; (b) the surface of a single particle; (c, d) broken particles, showing the 3D interconnected pores .. 476
Figure V - 9: (a) Charge-discharge profiles at C/10, (inset) capacity retention and coulombic efficiency at C/10; (b) Discharge profiles at varying rates .. 476
Figure V - 38: (a) TEM image of 40 wt% Co3O4/C (b) Li2O2 oxidation curves of pure Carbon, Pt/C, and Co3O4/C in 1 M LiTFSI DME at 5 mV/s. .. 500
Figure V - 39: (a) HRTEM of 0.5Li2MnO3 + 0.5LiNi0.45Cr0.05Mn1.5O4 layered-layered materials, (b) selected area diffraction pattern from Fig. (a), (c) FFT of Fig. (a), (d) inverse Fourier transformation of (c) that are unique to Li2MnO3, which are shown in the inset. (e) and (f) highlight parts of (d) showing well defined Li2MnO3 symmetry. 501
Figure V - 40: The schematic of experimental set-up for in situ XRD studies during chemical lithium extraction. ... 504
Figure V - 41: XRD patterns during in situ chemical lithium extraction of LiFePO4: (a) XRD pattern for LiFePO4 at the beginning of reaction; (b) contour plot of peak intensities as a function of reaction time. (c) XRD pattern for final FePO4 at the end of reaction. ... 504
Figure V - 42: (a) The TEM image of morphology of mesoporous LiMn0.4Fe0.6PO4 Meso-46 sample; (b) The charge-discharge capacity of the Meso-46 at different rates. ... 505
Figure V - 43: In situ XRD patterns of LiMn0.4Fe0.6PO4 with mesoporous structure during first discharge 505
Figure V - 44: In situ XRD patterns of LiMn0.4Fe0.6PO4 without mesoporous structure during first discharge 505
Figure V - 45: Ex situ XAS spectra at Ni K-edge of high energy Li1.2Ni0.2Mn0.6O2 cathode before cycling and after 1st, 2nd, and 3rd charge and discharge. ... 505
Figure V - 46: Ex situ XAS spectra at Mn K-edge of high energy Li1.2Ni0.2Mn0.6O2 cathode before cycling and after 1st, 2nd, and 3rd charge and discharge. ... 505
Figure V - 47: Constant-current (1 mAcm−2) discharge of Li-O2 cells using electrolyte with and without perfluorotributylamine (FTBA) additives .. 506
Figure V - 48: Plots of Li/Li1.2Ni0.2Mn0.6O2/LiNi0.45Cr0.05Mn1.5O4 cells cycled between 4.6 and 2.0 V, ~C/15 rate, at (a) room temperature, and (b) 55°C; (c) dQ/dV plots of (b). .. 508
Figure V - 49: Top: Comparative rate study of uncoated and TiO2-coated NMC electrodes vs. Li metal at 15, 30, 75, 150, 300 and 750 mA/g at RT; Bottom: Corresponding rate study at 55°C. ... 510
Figure V - 50: (a) Surface coordination numbers; (b) Mn oxidation states of LiMnPO4. .. 511
Figure V - 51: In situ, hot-stage XRD characterization of (a) the charged MnPO4 electrode and (b) the MnPO4•H2O powder under an UHP-Ar atmosphere (heating rate: 5°C/min). .. 514
Figure V - 52: Rietveld refinement of XRD data of the Li1.2MnPO4 series. Refinements for x = 0.8 and 1.1 compositions are done using two phases, LiMnPO4 and Mn2P2O7. Mn2P2O7 peaks are marked with blue arrows. Green arrows indicate small impurity peaks of LiPO4. Red arrows indicate unidentified impurities in Li1.2MnPO4. ... 515
Figure V - 53: Cycling stability of Li1.2MnPO4 (0.5 ≤ x ≤ 1.2) between 2.0 and 4.5 V at C/20 rate. (1C=150 mAh/g). 515
Figure V - 54: a) SEM image of LiNi0.45Mn1.5O4; b) and c) electron diffraction patterns of LiNi0.45Mn1.5O4 in the [001] and [110] zone, respectively; d) SEM image of LiNi0.45Cr0.05Mn1.5O4 e) and f) electron diffraction patterns of LiNi0.45Cr0.05Mn1.5O4 in the [001] and [110] zones, respectively. ... 516
Figure V - 55: Comparison of a) cycling stability for LiNi0.45Mn1.5O4 and LiNi0.45Cr0.05Mn1.5O4 and b) voltage profiles of LiNi0.45Cr0.05Mn1.5O4 tested with and without LiBOB. .. 516
Figure V - 56: Comparison of the rate capabilities of novel organic cathodes with more than one redox center. 517
Figure V - 57: a) Charge-discharge profiles, b) dQ/dV plots for the first two cycles. Filled symbols: first cycle; open symbols: second cycle, and c) rate comparison of the oxides at the indicated current densities. Data for x=0 and 0.14 are shown in black and red, respectively. .. 519
Figure V - 58: XRD patterns of the LiNi0.45Mn1.5O4 crystals synthesized at indicated temperatures. Arrows indicate peaks from the rock-salt type phase. .. 520
Figure V - 59: SEM images of LiNi0.45Mn1.5O4 crystals prepared from a) oxide precursors in eutectic LiCl-KCl mixture, b) nitrate precursors in a LiCl flux, and c) nitrate precursors in eutectic LiCl-KCl mixture. .. 520
Figure V - 60: FTIR spectra of the LiNi0.45Mn1.5O4 crystals. Arrows indicate peaks from the ordered structure. 520
Figure V - 61: Rate capability comparison of LiNi0.45Mn1.5O4 crystals. Results obtained from half-cell testing with Li foil as counter and reference electrodes, and 1M LiPF6 in 1:1 ethylene carbonate: diethyl carbonate as electrolyte. 521
Figure V - 62: a) XRD patterns and b) lattice parameter and Mn2+ content in LiNi0.45Mn1.5O4 (0.35x≤0.5) crystals. 522
Figure V - 63: a) FTIR spectra and b) peak ratio of 590/620 and Mn2+ content in LiNi0.45Mn1.5O4 (0.35x≤0.5) crystals. 522
Figure V - 64: Cycle performance of Li-S batteries with/out electrolyte additives. .. 525
Figure V - 65: Cycling performance of S/C composites with 50% sulfur loading. Carbon hosts have pore volumes of 2.35 and 1.12 cm3/g. Surface areas are ~ 800 m2/g for both materials. Capacity is normalized by the sulfur alone. 526
Figure V - 66: (a) Voltage profiles of Li-S cell with phosphorous sulfide additive. (b) cycling performance at 0.1 C in 1M LiTFSI. .. 527
Figure V - 67: (a) Voltage profile of first charge/ discharge cycle of Li-S cell with a pre-formed SEI on Li anode. (b) coulombic efficiency and cycling performance of the cell after the blockage of polysulfide shuttle. 527
Figure V - 68: Raman maps showing local SOC variation across NCA electrodes cycled at 4.1 V under constant current condition at 3C with 1 hour PS. SOC plots show the local inhomogeneity across the electrode surface and could vary under electrochemical conditions.

Figure V - 69: Micro-Raman mapping of the pristine Li1.2Ni0.175Co0.1Mn0.525O2 electrode.

Figure V - 70: Capacity as a function of Cycle number for pristine Li1.2Ni0.175Co0.1Mn0.525O2 with 1.5 wt% CNF.

Figure V - 71: Voltage profile at 1st, 5th, 50th, 100th and 200th cycles.

Figure V - 72: (a) Cycle life comparison between standard binder carbon black composition and with CNF addition and (b) the corresponding rate performance comparison.

Figure V - 73: CV studies on Li1.2Ni0.175Co0.1Mn0.525O2. First cycle anodic and cathodic peaks shown as red dashed line, the second through fifth CV curves are shown as solid lines.

Figure V - 74: Variation of specific capacity vs. cycle numbers of ne-Si/CNT on INCONEL 600 cycled at a current rates of 100 mA/g, 200 mA/g and 400 mA/g.

Figure V - 75: Variation of specific capacity vs. cycle number of C/Si/CA composite cycled at C/5 rate.

Figure V - 76: Charge capacities of Si/C based composite using PVDF, and the two novel polymer binders.

Figure V - 77: Cycling data for the deposited amorphous film cycled at ~400 mA/g.

Figure V - 78: CV of LiNi0.5Mn1.504 powder pressed onto Al foil.

Figure V - 79: (a-g) Baseline subtracted Raman spectra of a LiNi0.5Mn1.5O4 particle during CV scan (labels correspond to Figure V - 78).

Figure V - 80: Current (left axis) and fluorescence intensity (right axis) vs. time during three CVs between 3.5 and 5.0 V at 0.05 mV/s.

Figure V - 81: Structure of Lithium/aqueous cathode cell and its charge/discharge behavior.

Figure V - 82: Relationship of conductivity and x in Li7-xLa3Zr2-xTaxO12.

Figure V - 83: Stable cycling of Si anodes with rigid structural skeleton and continuous conductive carbon coating.

Figure V - 84: Stable cycling of SiO2-based anodes with a rigid structural skeleton and continuous conductive carbon coating.

Figure V - 85: a) Stable cycling of Si anodes with rigid skeleton support and continuous conductive carbon coating. Good cycling stability and high capacity (~650 mAh/g anode in 90 cycles at 1 A/g) were obtained using commercial Si powder. b) Si anode cycling at different current densities from 0.5 A/g to 8 A/g. c) Si anode cycling stability with and without FEC as the electrolyte additive (as in (a)). Capacities were calculated based on the full weight of the electrode, including carbon additive and binders.

Figure V - 86: Structure characterization of porous Si with a 10-nm pore size. a) TEM image shows the carbon coated on porous Si. b) Pore size and pore volume change of the porous Si before and after carbon coating.

Figure V - 87: Cycle stability of anodes of porous Si with different pore sizes. a) Cycle stability at a low current density of 100 mA/g. b) Cycle stability at high current density of 1 A/g.

Figure V - 88: Molecular structure of conductive polymer binder.

Figure V - 89: Carbon-1s XAS spectra collected on a series of polymers.

Figure V - 90: The initial cycling behaviors of Si particles in different conductive matrices against lithium metal counter electrodes at C/10 rate.

Figure V - 91: TEM images of Si nanoparticles [(a) and (b)] as-received from commercial supplier showing SiO2 layer on the surface and [(c) and (d)] after 30 min of HF etching to remove the SiO2 surface layer.

Figure V - 92: SiO2 content in the samples, determined using TGA, as a function of etching time.

Figure V - 93: Specific capacity vs. potential of the first 10 cycles of Si electrode. (a) and (a-1) As-received Si, (b) and (b-1) Si after 10 min of etching, (c) and (c-1) Si after 30 min of etching. (Specific capacities in (a), (b) and (c) are based on gross Si particle weight; specific capacities in (a-1), (b-1) and (c-1) are based on pure Si weight after discounting SiO2.)

Figure V - 94: A SEM image of the copper-coated silicon particle (20-25 μm) after annealing.

Figure V - 95: Demonstration of how silicon is bound to the copper foil (edge-on view) after annealing.

Figure V - 96: MAS-NMR study of species formed on annealing of electrode materials.

Figure V - 97: The cycling capacity of a series of CuSi4 electrodes cycles to LiSi, Li1Si4, and LiSi2.

Figure V - 98: The cycling profile for CuSi4 electrodes cycled to the composition Li2Si1.

Figure V - 99: SEM images of the two types of Cu substrates generated for the micro-tomography study.

Figure V - 100: Capacity retention on cycling of Sn-Fe formed by titanium reduction using hard iron grinding media and cycled between 0.01 and 1.2 volts at 0.2 mA/cm2.
Figure V - 101: Lithium removal from the Sn-Fe electrode synthesized by titanium reduction in soft-iron media. (a) cycled between 0.01 and 1.2 volts, (b) between 0.01 and 1.5 volts, and (c) Ragone plots comparing this material with the SONY SnCo anode. .. 565

Figure V - 102: Lithium insertion into the Sn-Fe electrode synthesized by titanium reduction in soft-iron media. (a) cycled between 0.01 and 1.2 volts, (b) between 0.01 and 1.5 volts, and (c) Ragone plots comparing this material with the SONY SnCo anode. .. 565

Figure V - 103: Rate capability of Si/MgO/graphite electrode between 0.01 V and 1.5 V. (a) capacity cycling at different current density; (b) lithium insertion/removal curve at different rates, and Ragone plot for Li insertion. 1 C rate = 2.8 mA/cm². The first cycle current density was 0.3 mA/cm². For current = 1.5, 3, 8 mA/cm², the Li/SMOG half cell was discharged to 0.01 V and held at 0.01 V for 2 hours before charged. .. 566

Figure V - 104: TEM images of exfoliated MXene nanosheets. (a) TEM micrographs of exfoliated 2-D nanosheets of Ti-C-O-F. (b) Exfoliated 2-D nanosheets; inset SAD shows hexagonal basal plane. (c) HRTEM image showing the separation of individual sheets after ultra-sonic treatment. (d) HRTEM image of bilayer Ti₃C₂(OH)ₓFᵧ. 568

Figure V - 105: TEM images of exfoliated MXene nanosheets. HRTEM image of a bilayer Ti₃C₂(OH)ₓFᵧ. (a) Conical scroll of about 20 nm in outer diameter. (b) Cross sectional TEM image of a scroll with inner radius less than 20 nm. (c) TEM micrographs for stacked layers of Ti-C-O-F. Those are similar to multilayer graphene or exfoliated graphite that finds use in electrochemical storage. (d) The same as c but at a higher magnification. .. 569

Figure V - 106: Lithiation and de-lithiation charge density as a function of the cycle number for pristine Ti₃AlC₂ and exfoliated Ti₃AlC₂ (Ti₃C₂ MXene). .. 569

Figure V - 107: Cover of Advanced Materials in which our paper appeared. This colorized SEM micrograph of a typical exfoliated Ti₃C₂ grain was taken at Drexel University by B. Anasori. .. 570

Figure V - 108: a) Image of mixed phase HWCVD Si and b) corresponding Raman spectra compared with c) image of optimized a-Si and d) corresponding Raman spectrum. .. 573

Figure V - 109: Cycling performance of a 15 µm thick electrode containing 60:20:20 Si:AB:PVDF compared to our new 30-40 µm thick electrodes fabricated with a novel technique. .. 574

Figure V - 110: a) Durable cycling performance and Coulombic efficiency of an ALD coated nano-Si electrode employing the novel matrix with copper employed as both the conductive additive and binder. b) Voltage discharge and charge profiles of both bare and coated electrodes at cycle 50. .. 574

Figure V - 111: Cycling performance of NG and LiCoO₂ full cells where various electrodes are coated with Al₂O₃. .. 575

Figure V - 112: TEM images of (a) as-prepared Si nanoparticles and (b) Si-graphene nanocomposites. ... 577

Figure V - 113: (a) TEM image of as-prepared Si-graphene nanocomposites; and (b) XRD patterns of as-prepared Si nanoparticles and Si-graphene nanocomposites. ... 577

Figure V - 114: (a) Charge-discharge curves of Si-graphene nanocomposites at a rate of 200 mA/g between 0.01 and 1.5 V; (b) Cycling performance of Si-graphene nanocomposites at a high current density of 2000 mA/g. .. 578

Figure V - 115: Silane-PEO containing copolymers. .. 578

Figure V - 116: Comparison of PVDF and CMC/SBR binders with Radel and S-Radel. .. 579

Figure V - 117: PXRD pattern of Ba₆Al₄Si₁₆O₂₄. .. 581

Figure V - 118: Image of barium-intercalated silicon clathrate (Type I, Ba₆Si₄₆) pellets formed from the high-pressure, high-temperature multi-anvil structural conversion of barium silicide (BaSi₂) at three different pressure regimes. .. 581

Figure V - 119: Powder X-ray diffraction pattern of the 5 GPa product is compared with that of BaSi₂ and the positions of high-temperature multi-anvil structural conversion of barium silicide (BaSi₂) at three different pressure regimes. .. 581

Figure V - 120: (A) PEMS deposition chamber and setup for depositing nano-particles of silicon clathrate (guest free) into a pool of IL. (B) Image of deposition plasma directed over pool of IL. (C) Image of IL pool following PEMS deposition and recovered IL containing nano-particles of silicon clathrate (D). .. 582

Figure V - 121: Image of empty Si₄₆ produced by PEMS. .. 582

Figure V - 122: Raman spectroscopic analysis of the Si₄₆ produced by PEMS deposition into an ionic liquid. .. 583

Figure V - 123: Energy change of Si₄₆ due to Ba guest atoms or Al substitution of the Si framework. .. 583

Figure V - 124: Cyclic voltammetry of Ba₆Al₄Si₁₆ for the reductive intercalation and oxidative deintercalation of Li⁺ after the formation of a stable SEI. .. 584

Figure V - 125: Specific capacity with cycling for anodes with different Si particle sizes bound together with inorganic glue. .. 586

Figure V - 126: TEM images and diffraction patterns of the same two nanowires before (left) and after (right) lithiation. 586

Figure V - 127: Hollow Si nanoparticle synthesis and images. .. 587

Figure V - 128: Electrochemical performance of hollow Si nanoparticles. .. 588
Figure V - 129: (A) Cycle performance of MC550 under different rate conditions and (B) comparison of cell performance between mesoporous carbon MC550 and non-porous carbon C550 under same rate conditions (the electrode area is 1.32cm²)... 591
Figure V - 130: (A) Cycle performance of MC550 with Polypropylene (PPy) surface coating (10wt% and 20wt%) under different rate conditions; (B) Cycle performance of MC550 with carbon nanotube (CNT) doping (10wt% and 20wt%) under different rate conditions... 591
Figure V - 131: (A) First cycle of MC550 with 10wt% surface coating of single ion conductors under the rate of C/20 (B) Cycle performance of MC550 with 10wt% surface coating of single ion conductors under different rate conditions.... 592
Figure V - 132: Comparison of the rate capability of different commercial carbons with the house synthesized mesoporous carbon. Natural graphite, potaoat graphite and mesophasic graphite all come from Pred. Materials. MCMB (MesoCarbon MicroBeads) comes from MTI Corporation.. 592
Figure V - 133: Scanning electron micrographs of separators with void fraction, $\alpha = 0.43$ at a) $\alpha = 0.12$ b) $\alpha = 0.22$ c) $\alpha = 0.43$ and d) $\alpha = 2.02$ obtained by cryofracturing washed out films. (Images taken from Wong et al., paper under review.) 594
Figure V - 134: Synthesis of P3HT-b-PEO ... 595
Figure V - 135: Average specific capacities for the first 10 cycles of 10 cells. .. 595
Figure V - 136: Methods of immobilizing electrolyte anions in lithium ion batteries. (a) Polyelectrolyte ionomers for use as separators and binders; (b) surface modified carbons for incorporation into composite electrodes to control lithium ion concentration.. 598
Figure V - 137: New salts synthesized and tested in FY10... 599
Figure V - 138: Structure of Polyether-polysulfone Single ion conductor (PS-TFSI) ... 599
Figure V - 139: Conductivities of polyetherolye gels as a function of temperature. Gels are prepared with EC:EMC solvent. ... 600
Figure V - 140: Nyquist plot of impedance of PS-TFSI Single-ion conductor gel against Li metal.. 601
Figure V - 141: Nyquist plots of Half-cells of LiFePO$_4$ one with a single-ion conductor separator and binder and one with a binary salt electrolyte... 601
Figure V - 142: Discharge capacity as a function of rate comparison for single ion conductors versus binary salt electrolytes... 601
Figure V - 143: Voltammetry of Polysulfone SIC gel in Li/SIC/LiFePO$_4$ cell... 601
Figure V - 144: Synthesis of LiBOBPHO-R (R = Ph, 2-MePh). .. 606
Figure V - 145: Synthesis of lithium CTB (R = Me, Et; R' = Ph, 4-MePh, 4-MeOPh, Me, Bu, Cy, OH)... 606
Figure V - 146: Synthesis of lithium CBPO ... 606
Figure V - 147: Molecular structure of the compounds in Table V - 3. ... 606
Figure V - 148: TGA of the first generation FRions. ... 607
Figure V - 149: Capacity versus cycle number for the specified electrolyte formulations... 607
Figure V - 150: In situ $\Delta R/R$ vs wavenumber for various sampling potentials, samp, as specified. See text for details 608
Figure V - 151: Differential capacity profiles of Li/MCMB with 1.2M LiPF$_6$/EC/EMC 3:7+2% additive............................... 610
Figure V - 152: Illustration of the dissociation of the ally group from a 1,3,5-triallyl-[1,3,5]triazinane-2,4,6-trione molecule. ... 611
Figure V - 153: Capacity retention of MCMB/NCM cells cycled between 3 and 4.0V at 55 °C in electrolyte of 1.2M LiPF$_6$/EC/EMC 3:7 with no and various amount of the TTT additive... 611
Figure V - 154: Examples of anions synthesized... 613
Figure V - 155: TGA heating traces of the salts. ... 613
Figure V - 156: Ion coordination in the crystal structure of LiETAC (Li-purple, O-red, N-blue, F-green). 613
Figure V - 157: Phase diagrams for (AN)n-LiFCSI and (AN)n-LiPF6 mixtures ... 614
Figure V - 158: Phase diagrams for (AN)n-LiDFOB and (AD)n-LiDFOB mixtures.. 614
Figure V - 159: Ion coordination in the crystal structures of (AN):LiDFOB and (AN)Li:LiDFOB (Li-purple, O-red, N-blue, B-tan, F-green). ... 615
Figure V - 160: Ion coordination in the crystal structures of (ADN):LiDFOB (Li-purple, O-red, N-blue, B-tan, F-green). ... 615
Figure V - 161: C/20 charging to 4.75 & 5.30V and hold at same V, LiNiO_{3}, Mn$_{2}$. Scan (5mV/S) and hold (4.75 & 5.30V) on Pt; LiPF$_6$/EC/EMC ... 615
Figure V - 162: Specific capacity of LiNi$_{0.3}$Mn$_{0.7}$O$_2$ cells containing standard electrolyte and added LiBOB 617
Figure V - 163: First charge-discharge curve for LiPF4(C2O4) and LiPF6 electrolytes.. 618
Figure V - 164: XPS analysis of graphite/LiFePO$_4$ cells. ... 618
Figure V - 165: Cycling performance of graphite/LiNi$_{0.3}$Co$_{0.7}$Mn$_{0.7}$O$_2$ cells with different electrolytes.................. 619
electrode is taken to 50% SOC from either the fully-charged state (black line) or from the fully-discharged state (red line).

Figure V - 199: Model results that show a difference in rate capability depending on the previous cycling history.

Figure V - 200: Calculated stress in graphite active material (AM) and PVdF binder (B) as a function of discharge.

Energy Storage R&D xxviii FY 2011 Annual Progress Report
Figure V - 201: Steady-state current vs. voltage after different lengths of passivation holds. Markers are measurements, dashed lines are model fits. Both the exchange current density \(i_0 \) and the through-film limiting current \(i_{\text{lim}} \) decrease. Data is measured at 900 rpm with 1.1 mM ferrocene/ferrocenium hexafluorophosphate. .. 645

Figure V - 202: Nyquist plot of electrode after different lengths of passivation holds. The high-frequency peak depends on passivation time, but the low-frequency peak does not. .. 645

Figure V - 204: Comparison of through-film ferrocene impedance on the edge and basal planes of graphite. 646

Figure V - 205: (Left bottom) Bright field image of a LiNi_{0.5}Mn_{1.5}O_{4} particle containing different crystallites. (Left top) Electron diffraction patterns of each crystallite, showing the structure of a rock salt and a spinel phase, respectively. (Right) First cycle of a LiNi_{0.5}Mn_{1.5}O_{4} made at 900°C (red) and 1000°C (black). .. 649

Figure V - 206: (Top) \(\mu \)-XAS map of NiO electrodes reduced halfway at C/20 and 1C rate. (Bottom) %Ni^{3+} resulting from the linear combination fit of XANE spectra at different points on the map. .. 650

Figure V - 207: The voltage profiles for ordered (red) and 4 different disordered’ (yellow, green, blue and magenta) versions of Li_{x}(Ni_{0.5}Mn_{1.5})O_{4}. .. 652

Figure V - 208: Tuning the Li-C absorption energy as a function of Li content using the Grimme vdW formulation. 655

Figure V - 209: Announcement of the Materials Project www.materialsproject.org .. 653

Figure V - 210: Cross-sections of directionally freeze-cast and sintered LiCoO\(_2\) electrodes, viewed parallel to the solidifying ice front. The left panels show additive-free samples freeze-dried at 5 and 1°C/min, in which the slower freezing rate is seen to produce greater uniaxial alignment of porosity. The right panels show the effects of 5 wt% ethanol and sugar additive, which respectively produce coarser and finer aligned microstructures. 655

Figure V - 211: Cross-section of directionally freeze-cast and sintered LiNi_{0.5}Mn_{1.5}O_{4}. ... 655

Figure V - 212: Specific capacity vs. C-rate for sintered LiCoO\(_2\) electrodes prepared with and without aligned low-tortuosity porosity. .. 656

Figure V - 213: SEM micrograph of a MEMS-based silicon microchip used to enclose the liquid electrolyte. 659

Figure V - 214: Experimental setup of the in situ electrochemical cell TEM holder, microfluidic syringe pump to deliver liquid electrolyte to the cell and potentiostat for electrochemical testing. .. 659

Figure V - 215: a) SEM micrograph of battery electrodes (HOPG anode and LiCoO\(_2\) cathode) attached to biasing microchips and across the SiN\(_x\) membrane b) charging curve, c) bright-field TEM image of HOPG anode before experiment and d) snapshot acquired during in situ electrochemistry experiment depicting the formation of the SEI on the surface of the graphite anode. ... 659

Figure V - 216: Charge/discharge curve between 4.6 and 2.0 V (15 mA/g) for LNP-treated LCMO electrodes. Numbered points indicate predetermined states of charge at which cells were prepared for XAS measurements. 663

Figure V - 217: (a) Co K-edge XANES showing LNP-treated LCMO at all points of charge in Figure V - 216 and untreated LCMO. The inset in (a) shows a magnified view of the Co K pre-edge region for all points of charge. (b) Magnitude of the Fourier transformed Mn K-edge data for LNP-treated LCMO, untreated LCMO, and a Li\(_2\)MnO\(_3\) reference. ... 663

Figure V - 218: (a) Ni K-edge XANES of LNP-treated LCMO electrodes at charge points 1 and 4 in Figure V - 216, and a Ni\(_{3+}\) reference. (b) Ni K-edge XANES at points 1, 2 and 3, and Ni\(_{3+}\) and Ni\(_{4+}\) references. 664

Figure V - 219: Partially delithiated LiFePO\(_4\) below (a) and above (b) the Fe K-edge and the corresponding phasemap (c) with the distribution of phases within the crystals. ... 667

Figure V - 220: Morphology changes in a NiO particle during electrochemical cycling. .. 668

Figure V - 221: XRS data at the C K edge for pristine and lithiated HOPG. ... 668

Figure V - 222: SEM image of the a-TiO\(_2\) particles (20-25 \(\mu\)m) used for the synthesis. .. 671

Figure V - 223: MAS-NMR spectra of LATP sintering as a function of temperature. .. 672

Figure V - 224: (top) Sintered LATP plate, (b) close-up of sintered plate morphology. .. 672

Figure V - 225: Cycling of a lithium-lithium symmetrical cell using 0.6Li_{2}PO_{4}·0.4Li_{2}SiO_{3} with boron-based sintering as solid electrolyte. The lower inset shows a Nyquist plot of the cell before and after cycling. .. 672

Figure V - 226: Nyquist plot of a 4 electrode Devanathan-Stachurski cell. All four electrodes were lithium. The electrolyte chosen was 1 M LiPF\(_6\) EC/DEC. Frequency range (1MHz - 100mHz). .. 673

Figure V - 227: Nyquist plot of Li/Li cell with a Polysulfone-TFSI polyelectrolyte used as a gel with EC/EMC solvent. 673

Figure V - 228: Nyquist plot of Li/LTO cells with (top) no coating on the lithium anode over 50 cycles, and (b) a TMS-based coating on the lithium metal surface. ... 674

Figure V - 229: Cycling plots of Li/LTO cells comparing two different cells with no coating on the lithium anode, and (b) two cells with a TMS-based coating on the lithium metal surface. ... 675
List of Tables

Table II - 1: Recovery Act Awards for Electric Drive Vehicle Battery and Component Manufacturing Initiative 10
Table II - 2: Status of equipment purchases ... 68
Table II - 3: Key Equipment Listing .. 76
Table II - 4: Project Schedule .. 76

Table III - 1: Summary Requirements for EV Batteries ... 80
Table III - 2: Summary Requirements for PHEV Batteries ... 81
Table III - 3: Energy Storage Targets for Power Assist Hybrid Electric Vehicles .. 81
Table III - 4: Specific capacities and average voltage of cathode #8 used in cell build iteration #1 & #2 from half-cell coin cells ... 84
Table III - 5: Summary of cell build iterations, cathode material to be scaled-up and ship dates .. 85
Table III - 6: Summary of cell results obtained from 20Ah cells from cell build #1 ... 86
Table III - 7: Specific Power of Modules for Discharge EVPC Test .. 93
Table III - 8: Performance Targets for Deliverables .. 94
Table III - 9: Summary of program AT results (multiple chemistries and packaging) .. 98
Table III - 10: Summary of final AT results for prismatic cell (effect of ceramic content of various components) 98
Table III - 11: 10 Mile PHEV Gap Analysis ... 106
Table III - 12: 40 Mile PHEV Gap Analysis .. 107
Table III - 13: 6S3P Module Abuse Test Results ... 107
Table III - 14: Preliminary HEV LEESS Gap Analysis .. 112
Table III - 15: Percentage of 1.6 V Drop Attributed to the Individual Electrodes in LIC Cells .. 119
Table III - 16: CEF’s for various cathode materials ... 133
Table III - 17: The Capacity Loss between the NMC442 and Coated NMC442 after floating at 4.7V and 60°C for 200 hr (vs. graphite anode) ... 133
Table III - 18: Comparison of Impedance and Battery Size Factor for alloy and graphite cells 157
Table III - 19: Percent Static Capacity decrease after 250, 500 and 750 Charge Depleting Cycle .. 157
Table III - 20: Theoretical Cost Analysis for NCM Compositions .. 171
Table III - 21: Vehicle and battery model parameters .. 204
Table III - 22: Lithium demand with maximum use of electric vehicles .. 214
Table III - 23: Potential U.S. Demand for other Battery Materials .. 214
Table III - 24: Comparison of Recycling Processes ... 216
Table III - 25: Sanyo SA cell test matrix for memory study ... 230
Table III - 26: Sanyo SA cell test matrix for HCSD study ... 230
Table III - 27: Sanyo SA cell test matrix for memory study ... 232
Table III - 28: Sanyo SA cell test matrix for HCSD study ... 233
Table III - 29: Increase in interfacial impedance (per EIS) for selected aging conditions within thermal cycling matrix . 245
Table III - 30: List of Cells for the Test Model ... 272
Table III - 31: NREL-developed cell domain model options .. 278

Table IV - 1: 1st Cycle (10% excess anode) .. 308
Table IV - 2: Mechanical Properties of Lithiated Copper Tin alloys ... 314
Table IV - 3: Optimum Particle Sizes Calculated for Halfway and Full Lithiation .. 315
Table IV - 4: Estimated Electrode Capacity Density for Five Electrodes .. 315
Table IV - 5: Concentration of transition metal ions after cycling at 55°C (µg metal detected on MCMB surface / g cathode) .. 347
Table IV - 6: Rate capability of first cell build positive electrode material .. 424
Table IV - 7: Rate capability of second cell build positive electrode material ... 425
Table IV - 8: Cell distribution .. 427
Table IV - 9: Initial values from cells used in the calendar life test .. 427
Table IV - 10: Physical and Chemical Properties of Carbon anodes investigated .. 437
Table IV - 11: The Status of Milestones for Process Development and Scale-up of Advanced Electrolyte Materials 437

Table V - 1: Charge-Discharge Performance for 1st and 10th cycle for Silane-PEO (Si PEO) and sulfonate-PEO (S PEO) copolymer binders .. 579
Table V - 2: Average diffusion coefficient, D_avg, and PDIdiffusion of the relaxation distribution functions for the polymers used in this study [see ref. 4 for details] .. 594
Table V - 3: Heat Release Data .. 606
Table V - 4: Change in surface atomic concentration of each element .. 633
Table V - 5: Change in surface atomic concentration of each element .. 635
Table V - 6: SEI element quantity change .. 635
Table V - 7: Results of the Rietveld refinement of neutron diffraction data combined with transmission electron microscopy .. 648