Nuclear Energy Advanced Modeling and Simulation

R. Shane Johnson
Deputy Assistant Secretary for
Science and Technology Innovation

Overview for NEAC Review Meeting December 19, 2013

Nuclear Energy Enabling Technologies Nuclear Energy Advanced Modeling & Simulation (NEAMS)

Why NEAMS? Why pursue advanced modeling and simulation capabilities?

- When integrated with theory and experiment, modeling & simulation enhances opportunities for new insights into the complex phenomena occurring in the nuclear reactor
- Advanced modeling & simulation offers the ability to improve the performance and safety of nuclear energy; NEAMS provides new capabilities & tools for doing so
- These advancements can be deployed as user-friendly simulation toolsets to both the R&D community and industry will impact existing and future reactors

HUBS AND NEAMS – PARTNERSHIP AND COMPLEMENTARITY

Partnership

- Advance multi-scale, multi-physics computational methods for reactor simulations
- Demonstrate positive impact of models and simulations on NE technology

Complementarity

- CASL focus on solutions to industry defined challenges
- NEAMS focus on insights into performance and safety
- "hubification" using successful Hub R&D and business models to improve other programs
 - Medium-long term objectives, plan
 - Independent advisory boards
 - Self-sustained user groups
 - Funding stability

Positive Impact on NE technology

Modeling and Simulation Budgets

Nuclear Energy

	FY-08	FY-09	FY-10	FY-11	FY -12	FY-13	FY-14
NEAMS	7,792	20,000	26,574	40,495	15,299	17,242	9,536
HUB			22,000	22,000	23,517	24,588	24,300

MOOSE-BISON-MARMOT – Core of the Fuels Product Line

■ The MOOSE-BISON-MARMOT codes provide an advanced, multiscale fuel performance capability

 Simulation framework allowing rapid development of FEM-based applications

Reactor Product Line Multiphysics/Multiscale Development Roadmap

Neutronics

Thermo Mechanics Fluid Mechanics
Structural
Mechanics

System Response

Applications and Usability

Supporting Elements

Validation and UQ

SQA including Verification

Reactor Product Line Multiphysics/Multiscale Development Roadmap

Nek5000 & Star-CCM+ **PROTEUS Applications** RELAP-7 Diablo and Usability Validation and UQ MOOSE, CouPÉ, MOAB, MBCoupler, NiCE, MeshKit, VisIT **SQA** including Verification

NEAMS Toolkit Component Map

Nuclear Energy

NEAMS Components and their Users

GENERAL ATOMICS

Nuclear Energy

Cracow University of Technology Université

NEAMS Reactor Product Line Validation

■ NEAMS will provide baseline validation for every physics module

 Left to end user to execute application specific validation based on their own PIRT, GDCs and FOM

■ Have established validation plans for every physics module

- Neutronics Build on DIFF3-D/Variant validation basis
- Structural Mechanics Build on NIKE3D validation basis
- Thermal Fluids Custom validation plan
 - New DOE Data MAX, NSTF, MIR and NEUP data
 - International Collaborations
 - Russian Federation Collaboration (IBRAE, IPPE)
 - Euratom I-NERI
 - KAERI I-NERI
 - NEAMS Validation Pathways
 - Validation data requirements
 - Uncertainty quantification expectations
- RELAP-7
 - Custom validation plan based on EPRI collaboration

■ Will validate integrated RPL toolkit using EBR-II SHRT data

NEAMS Fuel Product Line Validation

- Issued Bison V&V Assessment Document 1.0
- Completed: 24 LWR cases, 13 TRISO cases
- Many more are needed; major emphasis for FY-14
 - FUMEX-II and -III priority cases
 - NNL collaboration on FNIGMA cases.
- Participation in FUel Modeling under Accident Conditions (FUMAC), new IAEA Coordinated Research Project (participated in initial roundtable planning meeting)
- Develop systematic approach to frequently run all cases, compare results and update documentation
- Sensitivity analyses and UQ studies DAKOTA and RAVEN

Nuclear Energy University Programs (NEUP) and NEAMS V&V

- The Nuclear Energy University Programs (NEUP) and the Integrated University Program (IUP) have a well established competitive process for awarding R&D, infrastructure and scholarships and fellowships.
 - NEAMS V&V included in the last two calls
 - This year 43 pre-proposals received for NEAMS V&V
 - In addition, appendix to the call included information on CASL and NEAMS data needs that might be served in response to calls from NE-5 and NE-7

Points to Remember

- ■NEAMS has a robust and growing user community
- ■NEAMS TOOLKIT is technology neutral with capability for simulations of LWRs, SFRs, and VHTRs
- ■NEAMS and CASL partner and complement each other, already making a difference and promising much more for the future

BACKGROUND

Nuclear Energy

■ Next two slides give examples on International Collaboration

- With Halden we are doing bison runs to help design a 3d fuel experiment
- with the National Nuclear Laboratory of the UK, we are sharing our code and they are sharing their expertise and potentially, data.

National Nuclear Laboratory (UK) Collaboration

- INL is sharing:
 - MOOSE/BISON software
 - Experience with advanced computational modeling
- NNL is sharing:
 - extensive experience with fuel performance modeling
 - Extensive experience with code validation
 - Potentially, a large number of nonproprietary LWR validation cases (>200)
- NNL recently used BISON to study an AP1000 fuel rod. Preliminary comparisons to ENIGMA results were reported as "broadly comparable". Further comparisons are needed.

Collaboration with Halden Reactor Project

- Several Halden experiments considered in our existing validation suite; raw data are available
- Validation to 3D experiment
 - Invited paper J. D. Hales, D. M. Perez, R. L. Williamson, S. R. Novascone, B. W. Spencer, and R. C. Martineau, Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets, Extended Halden Program Group Meeting, Gol, Norway, March 11-14, 2013.
- Jason Hales invited to guest lecture at the OECD-Halden Reactor Project Summer School, August 26-29, 2013
 - Topic Special Modeling: 3D Models and their Application
- Currently simulating a unique double-encapsulated fuel thermal conductivity experiment for installation in 2014; aiding in experimental design

