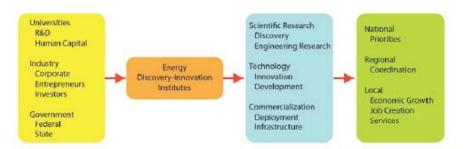
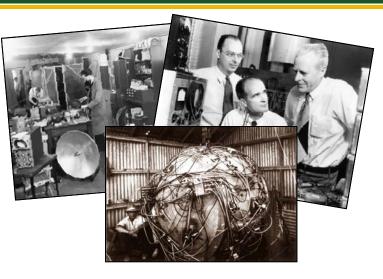


Alex R. Larzelere

Federal Program Manager, Modeling and Simulation Energy Innovation Hub Office of Nuclear Energy U.S. Department of Energy

Energy Innovation Hub Concept


Nuclear Energy



Energy Discover-Innovation Institutes, February 2009

Authors: James Duderstadt, Gary Was, Robert McGrath, Mark Muro, Michael Corradini, Linda Katehi, Rick Shangraw, and Andrea Sarzynski

Energy discovery-innovation institutes would draw from a diverse support network, conduct widespread activities, and be oriented towards achieving important social goals

"When you think of the Hubs, think of large, mission-oriented research efforts such as the Manhattan Project at Los Alamos or America's great industrial laboratories in their heyday. This type of research at AT&T's Bell Laboratories gave us the transistor that powers modern electronics."

Secretary Steven Chu letter to Rep. Peter J. Visclosky dated March 24, 2010

SEAB Task Force currently in process of validating & improving the original Hub concept

Vision for CASL (as originally proposed)

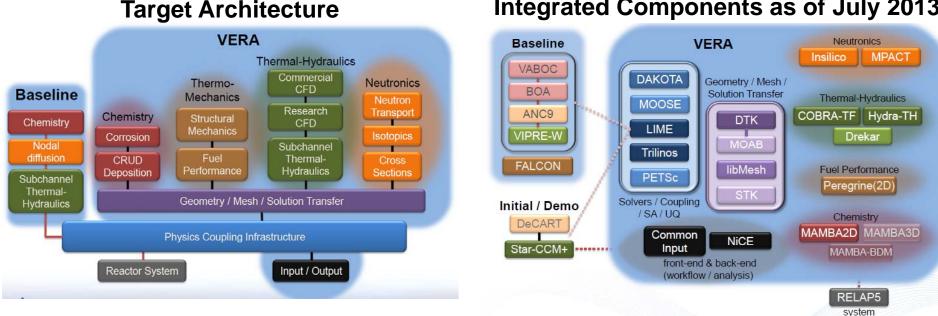
Adapt, Apply, and Develop (only where needed) Advanced Modeling and Simulation Tools and a Multi-physics Coupling Environment to Create a "Virtual Reactor" that Addresses Industry Defined Challenge Problems

TVA Watts Bar #1

	Development	innovation	validation		
Operational					
CRUD-induced power shift (CIPS)					
CRUD-induced localized corrosion (CILC)					
Grid-to-rod fretting failure (GTRF)					
Pellet-clad interaction (PCI)					
Fuel assembly distortion (FAD)					
Safety					
Departure from nucleate boiling (DNB)					
Cladding integrity during (LOCA)					
Cladding integrity during (RIA)					
Reactor vessel integrity					
Reactor internals integrity					
End of Year 3 Status					

Dovelopment Innovation Validation

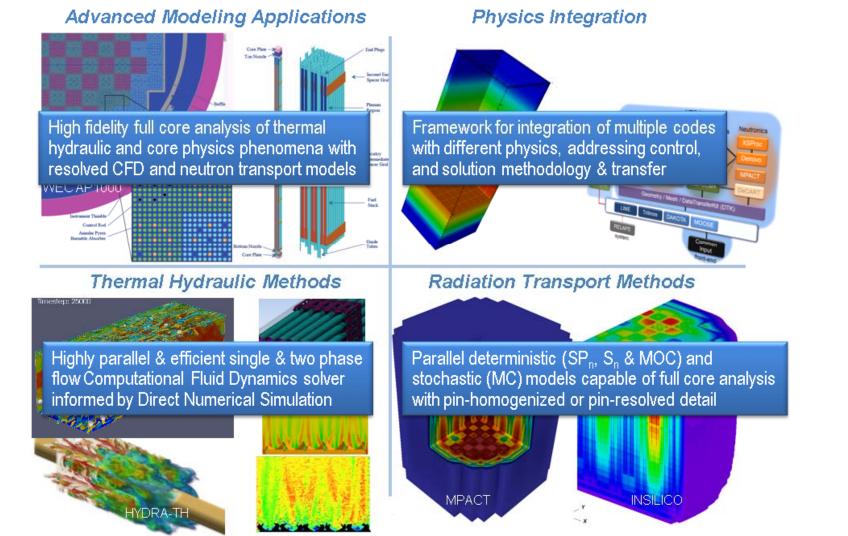
Significant Progress	Planning & Scoping
Good Progress	Not Started


Features of the Virtual Reactor (as originally proposed)

(th m Ch (cruc	 Rigorous software processes Fundamental focus on V&V and UQ Neutronics (diffusion, transport) Neutronics (diffusion, transport) Multi Internation, 	 Development guided by relevant challenge problems Broad applicability Broad applicability Thermal Hydraulics (thermal fluids) Structur Mechanie physics grator 	cs		
(crud formation, corrosion) Multi-resolution Geometry Multi-resolution Geometry Multi-resolution Geometry Multi-mesh Management					

Virtual Environment for Reactor **Applications (VERA)**

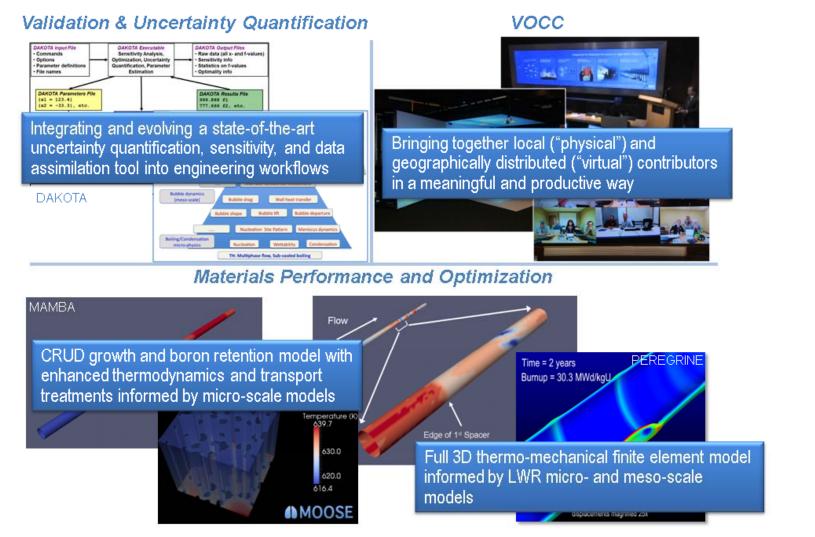
Built to be flexible to allow modules to be activated as needed to address specific challenge problems


When Needed – 3D, High Resolution, Built-in UQ, Based on 1st Principle Physics, Running on Leadership to Industry Class HPC

Integrated Components as of July 2013

CASL Technical Innovations

Nuclear Energy



CASL @3.5 Years

CASL Technology Innovations

Nuclear Energy

CASL R&D Business Enterprise Innovations

Nuclear Energy

CASL Continues to Plan and Execute With our Evolving Plan of Record (PoR) Process We have finished PoR-1 thru PoR-7, and are in the midst of PoR-8

- CASL is planned and executed in a series of 6-month periods known as the *Plan of Record* (PoR)
- PoR is a documented implementation plan of L1-L3 milestones, tasks, and risks ("who does what when")
- Each PoR is a living document describing expectations for the next six months
 - Senior Leadership Team (SLT) defines/refines L1 milestones with DOE concurrence
 - Extended Leadership Team (ELT) [Focus Area Leads + Challenge Problem Integrators] meets to discuss L1 and proposed supporting L2 and L3 milestones
 - Focus Area (FA) Leads work with staff and enter milestone information into project management database (Trac)
 - SLT iterates with FA Leads on milestones to finalize
 - Trac and PoR document finalized; baseline established and under change control

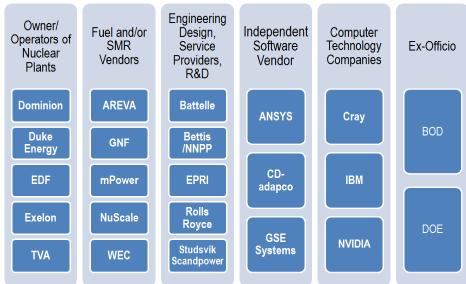
A structured continuously improving process to plan, execute and deliver results. 84+ milestones delivered to date in FY13 (since 10/01/12): 3 L1s, 8 L2s, 73 L3s

Guided and reviewed by an independent science council

Scientific Output thru Year 3

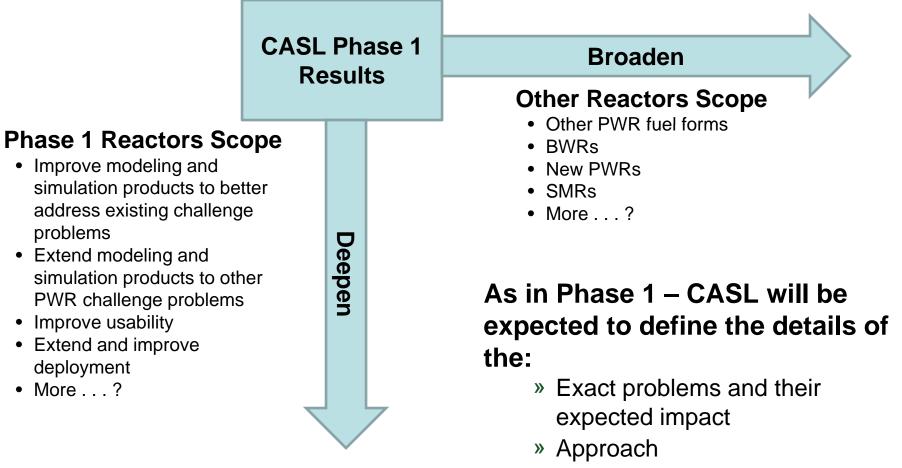
- Virtual Reactor M&S technology integrated, under active development and assessment, and deployed for beta testing
- 81+journal articles
- 328 conference papers
- 28 technical reports
- 51+invited talks
- 382 milestone reports
- 216 programmatic reports

CASL Technology Deployment


Nuclear Energy

Code Releases and Industry Tech Stands

- Limited Public Releases: Done through RSICC
- Test Stands: Early deployment to industry for rapid and enhanced testing, use, and ultimate adoption of VERA to support real-world LWR applications
 - Westinghouse: 6/13; focus on VERA simulation of AP1000 1st core startup
 - EPRI: 11/13; new EPRI computing capabilities will be utilized to test VERA fuel performance
 - TVA: Planned for Spring/Summer 2014; focus currently targeted for lower plenum flow anomaly


Industry Council

 Assure that CASL solutions are "useful and used" by industry and that CASL provides effective leadership advancing the M&S state-of-the-art.

CASL @ 5.0+ Years (Approach to Phase 2 Scope)

» Team