VTP Analysis Activities: AMR Plenary Overview

Jacob Ward
14 May 2012
Outline

• U.S. DRIVE
• Modeling
• Consumer choice
• GPRA
• Publications

“VTP Analysis activities offer a framework in which to evaluate the requirements and benefits of vehicle technology progress.”
U.S. DRIVE – Target-Setting

- Standardized elicitation (Tech Teams)
- Autonomie vehicle modeling and simulation (Namdo Kim, Ayman Moawad, Phil Sharer, ANL)
- Levelized-cost analytical framework
- Potential for analogous contributions to EV-Everywhere

U.S. DRIVE modeling facilitated a levelized-cost comparison like the GPRA14 preliminary results shown here.
U.S. DRIVE – Cradle-to-Grave

- Improve and execute GREET lifecycle energy/emissions modeling (Michael Wang, Amgad Elgowainy, ANL)

U.S. DRIVE C2G modeling will facilitate a well-to-wheel comparison like the FY11 FCT/VTP Program Record shown here:
Modeling – Systems Analysis

• Vehicle System Modeling and Simulation
 – Autonomie (Aymeric Rousseau, ANL)
 – FASTSim (Aaron Brooker, NREL)
 – TRUCK (Alicia Birky, TA Engineering)

• Complex Energy System Accounting
 – GREET (Michael Wang, Amgad Elgowainy, ANL)
 – VISION (Anant Vyas, JoAnn Zhou, ANL)

BEV energy consumption for city (UDDS) and highway (HWFET) drive cycles as estimated using Autonomie to support GPRA14 (preliminary results).
Consumer Choice

- MA³T – Market Adoption of Advanced Automotive Technologies (*Zhenhong Lin, David Greene, ORNL*)
- ADOPT (*Aaron Brooker, NREL*)

LDV Market Penetration as estimated using the MA³T model in VTP’s GPRA13 report.
VTP Benefits Estimation

- GPRA (Government Performance and Results Act)
 \textit{(Tom Stephens, ANL, Alicia Birky, TA Engineering)}

HT Fuel Economy (left) and total program benefit (right) as estimated in VTP’s GPRA13 report.

Impacts Metric

<table>
<thead>
<tr>
<th>Impacts</th>
<th>Metric</th>
<th>2015</th>
<th>2020</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy security</td>
<td>Oil savings, cumulative (billion bbl)</td>
<td>0.8</td>
<td>2.5</td>
<td>8.3</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td>Oil savings, annual (million bpd)</td>
<td>0.64</td>
<td>1.12</td>
<td>1.91</td>
<td>2.86</td>
</tr>
<tr>
<td></td>
<td>New vehicle mpg improvement (%)b</td>
<td>LDVs</td>
<td>19</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HTs</td>
<td>18</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>On-road mpg improvement (%)b</td>
<td>LDVs</td>
<td>6.0</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HTs</td>
<td>8</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>Environmental</td>
<td>CO₂ emissions reduction, cumulative (million t CO₂)</td>
<td>348</td>
<td>1,137</td>
<td>3,700</td>
<td>11,682</td>
</tr>
<tr>
<td></td>
<td>CO₂ emissions reduction, annual (million t CO₂/yr)</td>
<td>LDVs</td>
<td>80</td>
<td>137</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HTs</td>
<td>28</td>
<td>51</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>108</td>
<td>188</td>
<td>314</td>
<td>437</td>
</tr>
<tr>
<td>Economic</td>
<td>Primary energy savings, cumulative (quads)</td>
<td>4</td>
<td>13</td>
<td>44</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Primary energy savings, annual (quads/yr)</td>
<td>1.7</td>
<td>3.0</td>
<td>5.0</td>
<td>6.9</td>
</tr>
</tbody>
</table>

b “Reductions” and “savings” are calculated as the difference between the results from the baseline (No Program) case (i.e., in which there is no future DOE funding for this technology) and the results from the program case (i.e., in which requested DOE funding for this technology is received and is successful). All cumulative metrics are based on results beginning in 2011.

b Improvement relative to baseline (No Program) fleet in the same year. Note: LDV fuel economies shown here were revised to reflect LDV CAFE standards proposed for 2017 through 2025.
Fact #734 showcased the current gas guzzler tax (shown below) and listed vehicles to which it applies.