Metal-Based High Capacity Li-Ion Anodes

M. Stanley Whittingham
State University of New York at Binghamton
May 14th, 2012

Project ID #
ES063

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Project start date: 01-01-2011
• Project end date: 12-31-2014
• Percent complete: 25%

Barriers
• Barriers addressed
 – Lower-cost
 – Higher volumetric capacity and
 – Abuse-tolerant safer anodes

Budget
• Total project funding
 – DOE $724,626
 – Contractor share: Personnel
• Funding received
 – FY11: 172k$
 – FT12: 172k$

Partners
• National Laboratories
 – Brookhaven; Argonne; Lawrence Berkeley
• Local Industry
 – Primet
• Academia
 – Other Anode Partners
Objectives and Relevance of Work

• The primary objectives of our work are to:
 – Increase the volumetric capacity of the anode by a factor of two over today’s carbons
 • 1.6 Ah/cc
 – Increase the gravimetric capacity of the anode
 • ≥ 500 Ah/kg
 – Lower the cost of materials and approaches
 – Be compatible with low cost layered oxide and phosphate cathodes and the associated electrolyte

• The relevance of our work is:
 – Increasing the volumetric capacity of the anode by a factor of two will increase the cell energy density by up to 50%.
 – Will lower the cost of tomorrow’s batteries
a) Synthesize nano-size tin materials by at least two different methods (Dec. 11)
 - Completed.

b) Have the nano-size tin meet the gravimetric capacity of the Sn-Co-C electrode and exceed the volumetric capacity of the Conoco Philips CPG-8 graphite (Mar. 12)
 - Completed. The nano-size tin meets the gravimetric capacity of the Sn-Co-C electrode and exceeds the volumetric capacity of carbon.

c) Determine the limitations to the electrochemical behavior of the mechanochemical tin. Characterize these materials and determine their electrochemical behavior. (Sep. 12)
 - Ongoing.

d) Determine the electrochemistry of a new synthetic nano-silicon material. (Sep. 12)
 - Ongoing.
Approach and Strategy: Improved Anodes

- Place emphasis on low cost materials, tin and silicon
 - Study modified tin initially
 - Safer than silicon
 - 2 Li/Sn doubles capacity
 - Find several simple synthesis methods
 - Nano-amorphous tin
 - Need low cost components
 - Protect the nano-tin
 - From side-reactions
Technical Accomplishments: Barriers being Addressed

• **High Cost**
 – Find a replacement tin anode for the expensive commercial SnCo-C
 • Low cost materials
 • Low cost manufacturing method

• **Low Volumetric Capacity of Li-ion batteries**
 – Volumetric capacity of Li-ion batteries limited by carbon anode
 – Find a material with double the volumetric capacity

• **Low Safety and Abuse-tolerance**
 – Find an anode that reacts with lithium faster
 • Minimizes risk of dendrite formation
 – Find an anode that reacts with lithium at 300-500 mV vs Li
 • Minimizes risk of dendrite formation
 • Allows for higher rate charging
Milestone (a) completed: Nano-size tin materials synthesized

- **Method 1:**
 - SnO reduced by Ti (Al or Mg) and carbon by mechanochemical methods
 - Titanium found to be most effective reducing agent
 - Use of soft iron grinding media results in formation of Sn₂Fe/C composite
 - Material structurally characterized, 20-30 nm
 - Electrochemical behavior determined
 - Good electrochemistry found on un-optimized material, as shown below.

![Graphs showing capacity and coulombic efficiency vs. cycle number.](image-url)
Milestone (b) achieved using method 1: Tin-carbon electrode + Fe as Sn$_2$Fe

1. SnFe Capacity/Rate Capability surpasses SnCo-C

Lithium removal – discharge of cell

Lithium insertion – charging of cell

2. Volumetric capacity exceeds that of carbon: 2.2 Ah/cc vs < 1.0 Ah/cc
Milestone (a) completed: Nano-size tin materials synthesized

- **Method 2:**
 - FeCl₃ and SnCl₂ reacted with NaBH₄ by solvothermal treatment at 200 °C
 - Product is Sn₂Fe with particle size less than 100 nm
 - Trace amounts of Sn remaining lead to capacity fade as in pure tin
 - Sn removed by grinding with carbon
 - Grinding with carbon improves efficiency, but capacity drops to 500 (expts underway)

(Left) XRD patterns of (A) Solvothermally formed Fe-Sn; (B) Planetary ball-milled (pBM) Sn-Fe-C composite; (C) High-energy ball-milled (HEBM) Sn-Fe-C composite. Sn metal phase in the solvothermally formed material disappears after high-energy milling with graphite. (Right) Electrochemical cycling of this Sn-Fe alloy in two voltage windows; no grinding with carbon. The current was 0.3 mA/cm² in the 1st cycle and then changed to 0.5 mA/cm² thereafter.
Milestone (c) underway:
Electrochemical behavior of nano-tin

- Determine the limitations to the electrochemical behavior of the mechanochemical tin.
 - Tin reductant gave superior electrochemistry
 - Superior to Mg and Al
 - First cycle loss identified as an issue
 - Loss increases with tin metal content,
 - Loss also associated with carbon content
 - Plan to study various carbon contents
 - Determine minimum content

Figure: Cycling of nano-tin using Ti as reductant
Ti-soft used soft iron grinding media
Ti-hard used hard iron grinding media
Ti-zirconia used zirconia grinding media
Milestone (d) underway:
Nano-size silicon material synthesized

• **Method 1:**
 - Si/MgO/graphite (SMOG) composite was synthesized by a two-step process high energy ball-milling reduced by Mg and carbon by mechanochemical methods
 • First step: SiO reduced by Mg by high energy ball-milling.
 • Second step: Product of 1st step high-energy ball milled with carbon
 - Electrochemical behavior determined

Rate capability of SMOG electrode between 0.01 V and 1.5 V. (a) capacity on cycling at different current densities; (b) cycling curves at different rates, and Ragone plot for Li insertion. 1 C rate = 2.8 mA/cm². The first cycle current density was 0.3 mA/cm².
Milestone (d) underway: Nanosilicon synthesis from commercial alloy

- Using low cost engine-block Al-Si alloy
 - Determined the electrochemistry
- Nano-size changes properties and improves electrochemistry of Al:
 - Al dissolves silicon when nano-size (no solubility in bulk)
 - Increases capacity by > 50%
 - Improves capacity retention; loss reduced by a factor of 2
 - Coulombic efficiency improved
- Conclusion: Going nano helps
- Next step
 - Test nano-Si, after Al leached out
Collaboration and Coordination with other Institutions

- **Brookhaven National Laboratory**
 - Provided samples of the new Sn$_5$Fe compound
 - Electrochemical studies underway

- **Lawrence Berkeley National Laboratory**
 - Working with BATT anode team comparing tin and silicon materials
 - Similar challenges, such as 1$^{\text{st}}$ cycle loss, being addressed

- **Primet Precision (Ithaca Co)**
 - Collaboration underway on nanosizing materials (Nano-scissoring™)

- **NYBEST (New York Battery and Energy Storage Technology Consortium)**
 - Building collaborations between Industry, Academia, and Government
Future Work

- **Nano-Sn$_2$Fe**
 - Optimize synthesis methods
 - Mechanochemical method
 - Find viable source of iron for scale-up, that maintains nano-size
 - Determine optimum level of titanium reductant
 - Solvothermal method
 - Eliminate tin metal impurity
 - Increase capacity
 - Reduce first cycle loss
 - Find optimum carbon content

- **Nano-Si**
 - Investigate other reductants, such as titanium
 - Reduce 1st cycle loss
Summary

- **Nano-tin**
 - Discovered the excellent electrochemical behavior of nano-Sn$_2$Fe
 - Equal to SONY SnCo-C anode in capacity and rate capability
 - GO for replacement of SnCo-C
 - Doubles the volumetric capacity of carbon
 - GO for replacement of carbon anode
 - Found two synthesis methods for nano-Sn$_2$Fe
 - Mechanochemical method - GO
 - Solvothermal method – needs improvement

- **Nano-silicon**
 - Nano-silicon formed by Mg reduction of SiO in the presence of carbon
 - Preliminary electrochemical results look promising - GO
 - Common Al-Si engine-block alloy evaluated as nano-metal anode
 - Nano-Al, with Si doping, much superior to Si-free nano-Al
 - Nano-Si, after Al removal, shows unique morphology
 - Electrochemical behavior being evaluated