Mechanical Characterization of Fuel Injector Piezoactuators and Their Piezoceramics

Andrew A. Wereszczak, Hong Wang, and Hua-Tay Lin
Ceramic Science and Technology
Materials Science and Technology Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831

13th DEER Conference
Detroit, MI
16 August 2007

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as part of the Heavy Vehicle Propulsion Materials Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.
The Following Will Be Presented

• Background
 – Goals
 – Why piezo multilayer actuators (MLAs) for fuel injectors?

• Testing (Micro and Macro)
 – Piezoceramic - effect of E field on mechanical strength
 – Piezoactuator - changes in displacement and strain

• Summary

• Future work
Several Motivations Drive This Project

• HVPM Program seeks more precise spray control of fuel injectors - MLAs an enabler

• Piezo MLAs can reduce NO\textsubscript{x}, particulates, fuel consumption, and engine noise

• At issue - PZT actuators susceptible to electromechanical fatigue and are brittle; adapt structural ceramic design methods

• Evaluate MLA reliability under representative service conditions

• Link constituent micromechanical and MLA macromechanical responses
Piezoactuation in Fuel Injectors Has Advantages

Solenoid actuation
- Limited to binary response
- Controls fuel quantity well but limits flow rate profile control

Piezo actuation
- Enables rate shaping
- Controls both injection timing and fuel quantity control

- **Crank Angle (deg)**
- **Injected volume per stroke**
 - Main
 - Pilot
 - Timing
 - Shaping
Piezoceramic Characterization:
Part 1 of 2

Testing of stand-alone PZT layers
Effect of E Field on Mechanical Strength (4 Cases)

[1] Open circuit & “+” electrode in tension

[2] Electric field & “+” electrode in tension

[3] Open circuit & “−” electrode in tension

[4] Electric field & “−” electrode in tension

Ball-on-ring configuration, 2 mm steel ball diameter, steel supporting ring 7.4 mm ID, specimen = 10 x 10 x 0.273 mm, applied voltage 327 V or $E_{\text{applied}} = E_c = 1.2 \text{ kV/mm}$
Electric Field Affects Mechanical Strength

Surface-located defects were the strength-limiters

Characteristic Strength, σ_θ, (MPa)

Weibull Modulus, m

Positive &
$E = 1.2 \text{ kV/mm}$

Pooled
Negative & Positive
$E = 0$

Negative &
$E = 1.2 \text{ kV/mm}$

± 95% Confidence Ratio Rings

Porous Region

Surface-located defects were the strength-limiters

Surface-located defects were the strength-limiters
Fracture Toughness Dependence on E Field

Fracture Toughness, K_{ic}, (MPa\cdotm) vs. Flaw Size, a (µm)

- Neg, $E = 1.2$ kv/mm
- Neg, $E = 0$
- Pos, $E = 0$
- Pos, $E = 1.2$ kv/mm

Oak Ridge National Laboratory
U.S. Department of Energy

Wereshczak - 16 Aug 2007
Piezoactuator Characterization: Part 2 of 2

Testing of entire MLA
Evaluation of a “Plate-Through” MLA

- Configuration (a) is most common but stress concentrations result from discontinuities at ends of electrodes
- Configurations (b)-(e) proposed to resolve stress concentration issue

(Aburatani et al., 1994; Pritchard et al., 2001)
Compressive loading via dead weighting

Load Cell

Semi-articulating Si₃N₄ push rod (2)

Non-contact capacitance displacement gage (2)

Piezostack

Labview test control & data acquisition

High voltage & high frequency amplifiers

Load and displacement signal conditioners
Special Software Enables Test Control, Parameter Monitoring, and Data Acquisition
Static Compressive Stress Affects MLA Response
~ 5% Decrease in Actuator Displacement Response But Polarization Unchanged

Test condition: unipolar sine waveform with 150V amplitude, 50 Hz, and 30 MPa static compressive stress

5 \times 10^8 \text{ cycles} \sim 115 \text{ days}
FEA & PDS of MLA Enables Reliability Prediction and Design Optimization

1/4 Model of MLA

Applied Voltage

Axial Displacements

1st Principal Stresses

Ceramic reliability limited by tensile S1
Summary

• Mechanical test facilities established to enable evaluation of both
 – Piezoceramics (microstructure)
 – Piezoactuators (macrostructure)

• Strength of poled PZT is side dependent with negative side weaker in tension. Surface-located flaws were strength-limiter.

• ~ 5% strain reduction observed during 500M cycles in a PZT MLA with no significant loss of polarization. (30 MPa static compression and unipolar waveform at 150V and 50Hz)

• Reliability of piezoactuators is affected by microstructural and macrostructural flaws and damage.

• Displacement reduction may be due to pinned domain motion.
Future Work and Pursuits

• Actively pursue collaborations with both MLA manufacturers and end users
• Fabricate additional MLA fatigue test frames
• Add environmental testing capability
• Add piezoactuator to load train(s)
• Monitor MLA self-heating
• Add mixed loading capability
• More in-depth FEA and PDS commencement