The BMW Approach to Tier2 Bin5

Wolfgang Mattes
BMW Group
Contents.

• Challenges in the US market

• Tier2 Bin5 Concept
 → Internal Engine Measures
 → Aftertreatment: SCR System
 → OBD

• Summary
• Stringent emission legislation
 → limits and test-procedures

• High requirements to OBD
 → new engine control functions

• Intensified climatic edge conditions
 → altitude up to 4000 m

• Customer expectations
 → noise, vibrations, harshness

• Various fuel quality with large dispersions
 → combustion noise, driveability

→ New technologies are necessary
→ Robust, sustainable solutions are required
BMW Diesel.

NOx Challenge BIN 5.

Tier 1 LDT3

Tier 2 Bin 10 (till MY´08)

Tier 2 Bin 8 (MY´09)

Tier 2 Bin 5 (MY´09)

X5 3.0d with EU4 technology incl. DPF

NOx

0,98 g/mi

-94%

0,60

0,14

0,05

0,075

0,23

CO

6,4 g/mi

NMHC

0,32 g/mi

PM

0,08 g/mi

0,10

0,10

0,08
BMW Diesel.

Test cycles.
BMW Diesel.

Targets for BMW US Diesel.

- BMW typical fun to drive
- Fulfill 50 state legislations (\(\rightarrow\) Tier2 Bin5)
- BMW Diesel Strengths:
 - Low fuel-consumption
 \(\rightarrow\) 20-30\% below comparable petrol cars
 \(\rightarrow\) cost saving, sometimes supported by low fuel costs
 \(\rightarrow\) high cruising range
 - Fun to drive, outstanding torque characteristics
 \(\rightarrow\) relaxed cruising
 \(\rightarrow\) torque on demand
 \(\rightarrow\) good NVH due to low engine speed
BMW Diesel.
TIER2 BIN5 Concept.

- Modified Combustion with 2-stage Turbocharging
- Diesel Particulate Filter
- SCR-System (Urea)
- Advanced EGR-System
- Piezo Common-Rail Fuel Injection System
- OBD Sensors and Functions
BMW Diesel.

Combustion.

→ Central injector position
→ 4 valves per cylinder
→ Symmetrical combustion chamber
→ Variable air control

Inline 6.
Displacement 2992 cm³
Single Cylinder Displ. 499 cm³
Bore / Stroke 84/90 mm
Max. Combustion Pressure 180 bar
BMW Diesel.

Piezo Common-Rail System.

- Very quick needle opening and closing for effective combustion
- Up to 5 shots per combustion stroke
- Very low tolerances of injection quantities
- Long term learn-algorithm for injection control
- High pressure pump with feed volume control
BMW Diesel.

2-Stage Turbocharger (Variable Twin Turbo).
BMW Diesel.

Variable Twin Turbo – even more powerfull.

Variable Twin Turbo 3,0 l :
560 Nm at 2000 min⁻¹
200 kW at 4400 min⁻¹

Base engine 3,0 l (MJ 05) :
500 Nm at 2000 min⁻¹
160 kW at 4000 min⁻¹
Variable Twin Turbo – compact design.
Effect of Low Pressure EGR:
• Reduced charge temperature
• Higher boost pressure (efficiency turbocharger)
• Better fuel economy
• 30% NOx-advantage
BMW Diesel.
Closed Coupled Particulate Filter.

Particles are filtered and burnt off in the ceramic filter with its catalytic coating.

- No power loss (low flow resistance)
- No significant increase in FC
- Reduced HC/CO-emissions
- Reduced system effort
Core Components:

- Urea Tank
- Dosing Module
- Mixer
- SCR-Catalyst
- NOx-Sensor
- Control Unit / ECU

Source: Bosch
Reduction

- \(\text{NO} + \text{NO}_2 + 2 \text{NH}_3 \rightarrow 2 \text{N}_2 + 3 \text{H}_2\text{O} \)
- \(4 \text{NO} + \text{O}_2 + 4 \text{NH}_3 \rightarrow 4 \text{N}_2 + 6 \text{H}_2\text{O} \)
- \(6 \text{NO}_2 + 8 \text{NH}_3 \rightarrow 7 \text{N}_2 + 12 \text{H}_2\text{O} \)

Oxidation

- \(\text{NO} + \frac{1}{2} \text{O}_2 \rightarrow \text{NO}_2 \)

Thermolysis

- \((\text{NH}_2)_2\text{CO} \rightarrow \text{NH}_3 + \text{HNCO}\)

Hydrolysis

- \(\text{HNCO} + \text{H}_2\text{O} \rightarrow \text{NH}_3 + \text{CO}_2\)
Targets

- Improve Ammonia distribution → maximum conversion
- Reduce Ammonia slip, because of overloaded catalyst cells
- Best possible usage of mixing element
- Analysis of pressure drop and optimisation

Modelling Approach

- Transient CFD Simulation with StarCD
- Two component droplets (water, urea)
- Spray break-up and wall interaction
- Turbulenz modelling: k-ε RNG
- Modelling of wall film
BMW Diesel.

Droplet Distribution.

Base Mixer

Optimized Mixer

Droplet Diameter

high

low
BMW Diesel.

Droplet Distribution.

huge amount of droplets pass the mixer untouched

optimized mixer

improved droplet break-up

Droplet Diameter
BMW Diesel.

NH₃-Vapour Distribution.

Base Mixer

Optimized Mixer

TIME = 0.250 s

NH₃ Vapour

high

low
Ein Teil der Tröpfchen wird gegen die Wand geschleudert und verdampft.

Verdampfung zentraler am Mischer.

BMW Diesel.

NH₃-Vapour Distribution.

Base Mixer

Optimized Mixer

less urea evaporates on cooler exhaust pipe wall

better evaporation on hot Mixer

NH₃ Vapour
NH₃-Vapour Distribution.

Base Mixer

inhomogeneous NH₃ - distribution

Optimized Mixer

optimized NH₃ - distribution

NH₃ Vapour
test result: 43 mg/mi NOx

- Ammonia slip
- high efficiency of SCR-catalyst
- exhaust temperature
SCR-Catalyst Monitoring

→ NOx converting efficiency of the SCR-catalyst is calculated using downstream and upstream NOx-concentration

\[\eta = 1 - \frac{\int NO_x \text{ downstream}}{\int NO_x \text{ upstream}} \]

NOx-sensor tolerances are very important!
Monitoring of Dosing / Long Term Adaptation of the System

→ Deviation from optimum converting efficiency is detected by NOx-sensor and adaptation is carried out

• Ammonia cross sensitivity of the sensor is used
• Progression of signal curve is elementary to keep the optimum
Example: X5 3.0d

- Advanced Combustion
- Improved EGR
- DPF + SCR

-94% NOx reduction

Tier 1 (MDV 2) till MY´2003

EPA Bin 10 till MY´2008

US application based on EU 4-technology

EPA Bin 8

EPA Bin 5 = ULEV II
• BMW at leading edge of Diesel technology.

• A whole package of technologies is necessary to fulfill the challenging Tier2 Bin5 limits
 • Engine internal measures (combustion, boost-concept, EGR)
 • Aftertreatment (DPF + Urea-SCR)

• Clean Diesel technology can contribute a lot to save the future mobility.

• Mid- and long-term potentials for further reduced emissions, fuel consumption and increased power are under development.
Thank You for Your Attention!