

Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel

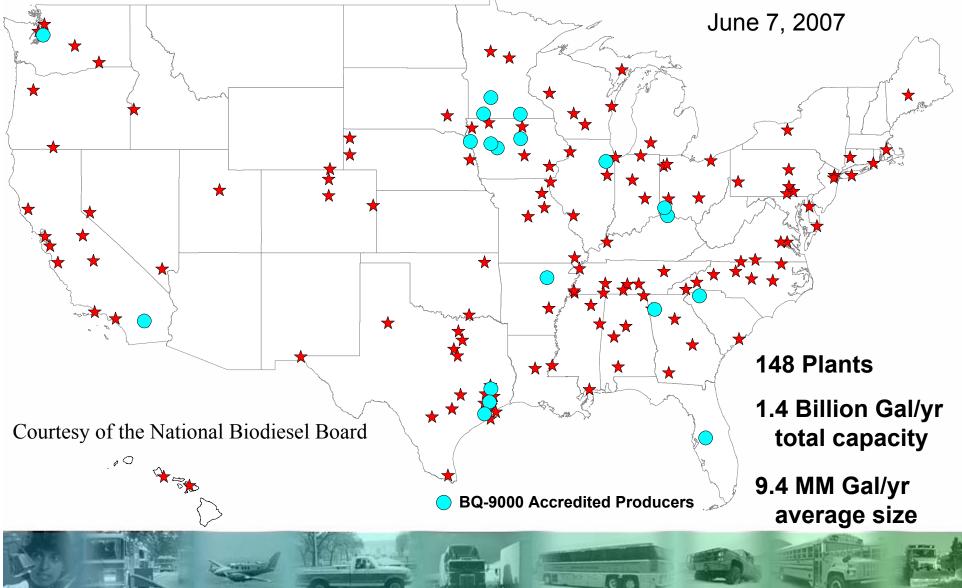
Steve Howell

<u>Technical Director</u> <u>National Biodiesel Board</u>

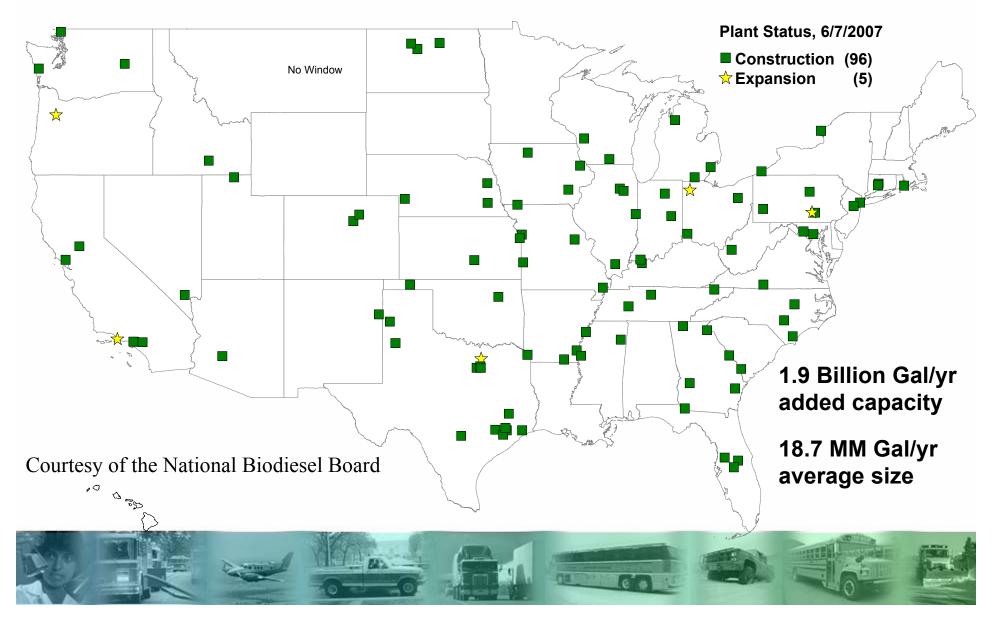
> Detroit, Michigan August 15, 2007

Today's Topics

Biodiesel Industry Status in the US


Summary of ASTM Biodiesel Efforts

◆2nd Generation Biodiesel



B100 Plants: Production Locations

B100 Plants: Construction/Expansion

Biodiesel Driving Forces

- Heightened awareness of the vulnerability of the US to our dependence on oil
- High prices for crude oil and its products
- Tax Incentives, both Federal and State
- Current Renewable Fuel Standard (RFS)
- A Variety of New Federal and State RFS's
- Global Warming: Life Cycle CO2 reductions
- Ease of use in existing engines and stations

ASTM Summary for Biodiesel

DIESEL Biodiesel Process

100 pounds+ 10 pounds=10 pounds+100 poundsTriglycerideAlcoholGlycerineMono-Alkyl

(Soy Oil) (Methanol)

3

, Mono-Alkyl Esters (Biodiesel)

- Raw Oil and Fats are NOT Biodiesel!
- Other 'Renewable Products' are NOT Biodiesel
- Must be long chain mono alkyl esters of fats and oils and meet ASTM D 6751
- This tight definition needed to secure OEM approvals and encourage testing

Spec Background

- ASTM B100 spec based on existing specs for #1 and #2 petrodiesel in ASTM D 975
- If #1 and #2 meet specs, blends are OK
 - No separate set of specs for blends of #1/#2
- If B100 meets D 6751 and diesel meets
 D 975, up to 20% biodiesel may be used
 - Blends up to B20 are approved
 - No separate set of specs for the blend

This has worked well in the marketplace

TEGEL ASTM D 6751-07a

Property	Test Method	<u>Limits</u>	<u>Units</u>
Calcium & Magnesium Alcohol control	EN 14538	5 max	ppm (ug/g)
either Flash Point D 93		130 min.	Degrees C
or GC methanol	EN 14110	0.2	% Volume
Flash Point	D 93	93 min.	Degrees C
Kin. Viscosity, 40C	D 445	1.9 - 6.0	mm ² /sec.
Sulfated Ash	D 874	0.02 max.	% mass
Sulfur	D 5453	0.05 max (500)	% mass (ppm)
S5005	D 5453	0.0015 max (15)	% mass (ppm)
Copper Corrosion	D 130	No. 3 max.	
Cetane number	D 613	47 min.	
Cloud Point	D 2500	Report	degrees C
Carbon Residue	D 4530	0.05 max.	% mass
Acid Number	D 664	0.50 max.	mg KOH/g
Free Glycerin	D 6854	0.020	% mass
Total Glycerin	D 6854	0.240	% mass
Phosphorous content	D 4951	0.001 max	% mass
Distillation, T90 AET	D 1160	360 max	degrees C
Na/K, combined	EN 14538	5 max	ppm (ug/g)
Oxidation Stability	EN 14112	3 min	hours
(Visual Appearance)	D 4176 Free of un-dissolved water, sediment and suspended matter		

BOLD = BQ-9000 Critical Specification Testing Once Production Process Under Control

Spec Background

 Some users, regulators and OEM's wanted blended fuel specs for biodiesel blends

- What do you measure if the parent fuel quality is not known? Bid specs, enforcement easier
- Blended fuel specifications are being set so blends will always be in-spec if two good parent fuels are used
- The key is getting B100 that meets D 6751
- Buying from BQ-9000 companies provides added assurance B100 will meet D 6751

STORESEL ASTM Current Status

- ASTM D 6751 is the approved standard for B100 to be used for blending up to B20 in the US
 - ASTM has approved D6751 for B100 use only for up to B20 in the final blend
 - Higher blends upon consultation with the OEM
- B5 being balloted into the petrodiesel specifications: D 975, D 396 (heating oil)
 - No changes to D975, D 396
 - B100 must meet D 6751 prior to blending
- B6 to B20 for on/off road diesel engines will be a stand alone specification
 - Widest of #1/#2 specifications, T-90 5 C increase
 - Addition of stability and acid number for final blend

SODIESEL ASTM D 6751 Activity

- Changes to D 6751 so that no change is needed for B5 in D 975, D 396
 - Completed: lower acid number; add stability parameter, add Ca/Mg, Na/K
- Precipitate above the cloud point issue identified in the market in 2005:
 - Most due to out of specification biodiesel
 - Small portion could be caused by minor components not controlled in the spec
- ASTM is in process of adding a specification to D 6751 that will address this issue in D 6751
- Once addressed, blended fuel ballots can move forward for approval

- New 'Blended and Alternative Fuels' category for D 975 and D 396
- All non-petroleum fuels would fall into this category, which would identify:
 - ASTM spec for the blend component
 - Maximum allowable concentration
 - Test method for measuring the component
- No parameters added and none changed compared to current D 975 or D 396

BODIESEL ASTM Activity

- Category was needed to address deficiencies in blend stocks not covered by D 975 or D 396
 - i.e. 5% raw vegetable oil could be blended into D 975 and meet properties of D 975 but could have severe problems not prevented by existing D 975 parameters
 - Biodiesel is covered through meeting D 6751 prior to blending
- Issue: Where do mostly hydrocarbon fuels like FT and hydrotreated oils/fats fall?
 - Are they already 'covered' by existing D 975 or D 396?
 - Do they need an ASTM spec prior to blending?
 - Are there minor components in these fuels that can cause problems which are not covered by D 975 or D 396?
- Task Force set up by ASTM to address these questions
 - Larger issue than just biodiesel, FT, hydrotreated oils/fats
 - Avoid one bad apple spoiling it for all renewables

2nd Generation Biodiesel

Biodiesel Then.....

- Biodiesel originally developed as a niche, high value added product
- Early 1990's, Soybean Farmer Research:
 - Excess soy oil was drain on soybean prices
 - If biodiesel could reach 30 million gallons per year, it could raise soybean prices 5 to 9 cents per bushel
- Raw oils cause problems, efforts focused on low cost processing (i.e. methyl esters) and setting specifications for existing oils/fats
 - No optimization of for oil yields or oil profile
 - Volumes insufficient to drive new, better fats/oils

Biodiesel Now....

- ♦ 148 plants, over 1.4 billion gal/yr capacity
- Over 100 more plants on the horizon
- Potential annual capacity over 3 billion gpy
- President's '20 in 10' would like to see more
- Existing and planned capacity, combined with government signals for the future, are sufficient to consider optimizing crops and their make-up for biodiesel

NREL, Aug. 2007

- Biodiesel from traditional oilseed crops, fats, and waste oils can be significant
 - Entire US soybean crop could supply ~6% of 60 billion gallon diesel market
- But a '2nd Generation' biodiesel is needed to help meet the Presidents '20 in 10' goals
 - Optimistic scenarios up to 25% of diesel fuel

NEREL

- This would require 15 billion gallons of biodiesel
- The oils/fats industry needs to begin to immediately focus on growing more oils/fats

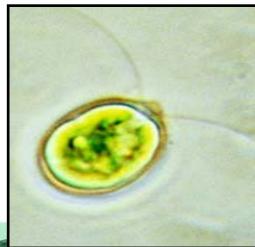
Source: Bob McCormick, National Renewable Energy Laboratory

"2nd Generation Biodiesel"

- A new biodiesel industry initiative that is just at the beginning stages
- Optimize existing `traditional' crops for higher oil content and modified fatty acid profile to improve stability and cold flow
- Investigate non-traditional crops for higher oil output and improved fatty acid profile
- Look at novel crops or other sources for oils/fats, i.e. biodiesel's `cellulosic ethanol'

NREL, Aug. 2007

Сгор	Oil Yield	
	Gallons/acre	
Corn	18	
Cotton	35	
Soybean	48	
Mustard seed	61	
Sunflower	102	
Rapeseed/Canola	127	
Jatropha	202	
Oil palm	635	
Algae	``10,000″	


Source: NREL; Wikipedia.org

BIODIESEL Micro-Algae for Biodiesel

- Existing crops will continue to be used and need to increase oil production and improve FA profile
- New crops like algae will be investigated and have much promise for the future:
 - Much greater per-acre productivity possible with algae
 - Non-food resource
 - Use otherwise non-productive land
 - Can utilize saline water
 - Can utilize waste CO₂ streams
- Micro-algae could be biodiesel's version of cellulosic ethanol

BODIESEL The Ideal Path Forward

- Biodiesel presents a way forward to meet performance, environmental, economic, and energy security needs
- Oilseeds contain both food (i.e. soy meal) and fuel (biodiesel from soy oil)
 - Food vs. fuel is not a major factor for biodiesel
- Legumes (soybeans) are nitrogen fixing and no-till planting practices can be used
 - Minimizes environmental issues of farming
 - Use agricultural land in production for years

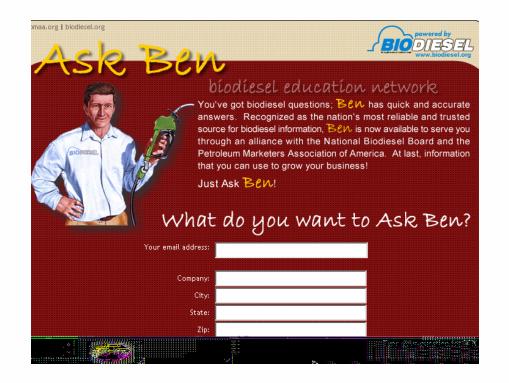
BODIESEL The Ideal Path Forward

- Independent USDA/DOE life cycle study shows biodiesel from soybeans has:
 - Fossil energy balance of 3.2 to 1
 - Life cycle CO2 reduction of 78%
- 10% oxygen in biodiesel (B100) has benefits that pure hydrocarbons don't:
 - Imparts lubricity at low concentrations
 - Biodegradable, non-toxic
 - Significant Particulate Matter (PM) reductions
 - Reduced temperatures needed for PM trap regeneration due to character of biodiesel soot

The Ideal Path Forward

- Optimize the fatty acid profile
 - Plant selection, breeding, genetics
- Totally saturated is not desirable
 - Cold flow issues but good stability and cetane
- Totally un-saturated is not desirable
 - Stability issues but good cold flow and cetane
- Optimize for mono-unsaturated
 - Excellent stability, cetane and cold flow
 - Also desirable for edible applications

BODIESEL The Ideal Path Forward


- Methyl ester process has low capital, operating and energy costs compared to other processes
 - Glycerine by-product further displaces crude oil products
- Medium size, decentralized plants are possible, compared to huge petroleum refineries
 - Adds new refining capacity, higher number of plants
 - High paying manufacturing JOBS
 - In rural parts of the country that are hurting
 - More companies involved, reduces monopolies
- More plants helps to insure energy security by minimizing impact if one plant becomes inactive
 - Natural disaster (hurricanes on the gulf, flooding, etc.)
 - Man made disaster (terrorist attack or bombing)
 - 'Normal' accidents or shut downs

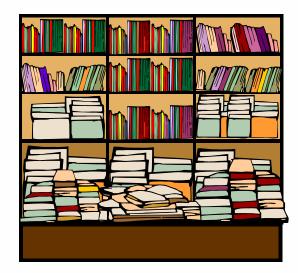
Educational Resources

- BEN: Biodiesel Education Network
- Web-based resource specifically for petroleum marketers
- Partnership between NBB/PMAA
- www.pmaa.org
- www.biodiesel.org

Other Biodiesel Resources

Biodiesel Magazine

- A <u>MUST HAVE'</u> magazine
- Biodiesel Industry Directory On-Line



NBB Resources

- •www.biodiesel.org
- •Technical Library
- •Biodiesel Bulletin
- Educational Videos Available
- Informational Resources
- Technical Resources
- •On-line Database & Spec Sheets

