H₂ Production by Oxygenic Phototrophs Eric L. Hegg

Bioresour. Technol. 2011, 102, 8589-8604

Michigan State University Great Lakes Bioenergy Research Center

Major Challenges to H₂ Photoproduction

> Technical Challenges

- Mixture of H₂ and O₂; H₂ separation and storage
- CO₂ addition and overall reactor design

≻Biological Challenges

- Poor efficiency of H₂ production
 - Poor heterologous expression of H₂-forming enzymes
 - Low quantum yields
 - Competition for reducing equivalents; poor electron coupling
- Sensitivity of H₂-forming enzymes to O₂

Overcoming Low Efficiency: Improving ET

- Eliminate or down-regulate pathways competing for ele
 - Production of organic acids
 - Formation of NADPH/carbon fixation

Trends Plant Sci. 2006, 11, 543-549

- Strategy depends on good genetics and an understanding of the metabolic pathways
- Identify endogenous electron transfer partner
 - Which ferredoxin or cytochrome?

Overcoming Low Efficiency: Improving ET

- Engineer improved coupling
 - Mutate docking site for enhanced binding

Fuse H₂ase to ferredoxin

NADPH

NADPH

NADPH

PSII

PQ PQ CYTIL PSI

PNAS 2011, 108, 9396-9401

• Fuse H₂ase directly to PS-I

Localize to a synthetic protein scaffold

Overcoming O₂ Sensitivity

- Utilize non-oxygenic photosynthesis
 - Purple bacteria (Rhodobacter sphaeroides)
 - Selective light
 - Sulfur-deprivation
- Engineer enzyme to be less O₂ sensitive
 - Inhibit diffusion of O₂
 - Alter redox potentials
- Separate H₂ and O₂ biosynthesis
 - Temporal separation (e.g. H₂ produced from fermentation)
 - Spatial separation
 - Heterocyst forming bacteria
 - Expression of [FeFe]-H₂ase in *Anabaena* sp. PCC 7120
 - Mutations can increase heterocyst frequency
 - Other compartments? Carboxysomes?

Wolk et al.

Identifying New Organisms

- Cyanothece sp. ATCC 51142
 - H₂ from nitrogenase
 - 465 μmol H₂ per mg chl per hr
 - Simultaneous light-driven H₂ and O₂ production
 - Over 100 hrs in presence of CO₂

Nat. Commun. 2010, 1:139

• Volvox carteri

- Multicellular green alga with differentiated cells
 - C. reinhardtii is most well-characterized relative
- First multicellular eukaryote discovered to have H₂ metabolism