H₂ Production by Oxygenic Phototrophs Eric L. Hegg Bioresour. Technol. 2011, 102, 8589-8604 Michigan State University Great Lakes Bioenergy Research Center ## Major Challenges to H₂ Photoproduction #### > Technical Challenges - Mixture of H₂ and O₂; H₂ separation and storage - CO₂ addition and overall reactor design #### **≻Biological Challenges** - Poor efficiency of H₂ production - Poor heterologous expression of H₂-forming enzymes - Low quantum yields - Competition for reducing equivalents; poor electron coupling - Sensitivity of H₂-forming enzymes to O₂ ### Overcoming Low Efficiency: Improving ET - Eliminate or down-regulate pathways competing for ele - Production of organic acids - Formation of NADPH/carbon fixation Trends Plant Sci. 2006, 11, 543-549 - Strategy depends on good genetics and an understanding of the metabolic pathways - Identify endogenous electron transfer partner - Which ferredoxin or cytochrome? ### Overcoming Low Efficiency: Improving ET - Engineer improved coupling - Mutate docking site for enhanced binding Fuse H₂ase to ferredoxin NADPH NADPH NADPH PSII PQ PQ CYTIL PSI PNAS 2011, 108, 9396-9401 • Fuse H₂ase directly to PS-I Localize to a synthetic protein scaffold # Overcoming O₂ Sensitivity - Utilize non-oxygenic photosynthesis - Purple bacteria (Rhodobacter sphaeroides) - Selective light - Sulfur-deprivation - Engineer enzyme to be less O₂ sensitive - Inhibit diffusion of O₂ - Alter redox potentials - Separate H₂ and O₂ biosynthesis - Temporal separation (e.g. H₂ produced from fermentation) - Spatial separation - Heterocyst forming bacteria - Expression of [FeFe]-H₂ase in *Anabaena* sp. PCC 7120 - Mutations can increase heterocyst frequency - Other compartments? Carboxysomes? Wolk et al. #### **Identifying New Organisms** - Cyanothece sp. ATCC 51142 - H₂ from nitrogenase - 465 μmol H₂ per mg chl per hr - Simultaneous light-driven H₂ and O₂ production - Over 100 hrs in presence of CO₂ Nat. Commun. 2010, 1:139 #### • Volvox carteri - Multicellular green alga with differentiated cells - C. reinhardtii is most well-characterized relative - First multicellular eukaryote discovered to have H₂ metabolism