DPF Performance with Biodiesel Blends

Aaron Williams, Bob McCormick, Bob Hayes, John Ireland
National Renewable Energy Laboratory

Howard L. Fang
Cummins, Inc.

Diesel Engine Efficiency and Emissions Research Conference
August 20-24, 2006

Project Sponsor: US Dept. of Energy, NPBF Activity
Dennis Smith, Technology Manager

CRADA Partners: Cummins
National Biodiesel Board
Project Objectives and Approach

How are DPFs impacted by blending with biodiesel?

Phase I CRADAs w/ Cummins & NBB (completed)

- **Transient testing** – Confirm operation of DPF with ULSD and B20 (HDT FTP)
- **Balance point temperature testing** – Understand how biodiesel blends impact temperature of soot oxidation on DPF (DECSE method)
- **Regeneration rate testing** – Understand how biodiesel blends may impact actively regenerated systems (Slope method)
- **Soot characterization** – Understand fundamental differences in biodiesel soot (Raman Spec, SEM-EDX, TGA)

Phase II CRADA w/ NBB (FY07)

- Moving to a 2007 compliant engine
- **Transient testing with controlled exhaust temps** – Understanding of how DPF design criteria could be affected by biodiesel blends
Experimental Configuration

• Cummins ISB 300
 – 2002 Engine, 2004 Certification
 – Cooled EGR, VGT
• Johnson Matthey CCRT
 – 12 Liter DPF
 – Passively Regenerated System
 – Pre Catalyst (NO₂ Production)
• Fuels: ULSD, B100, B20, B5

• ReFUEL Test Facility
 – 400 HP Dynamometer
 – Transient & Steady State Testing
• Cummins
 – Soot Characterization
Heavy Duty Transient (HDT) Test Results

- Installation of DPF (base fuel):
 -97% CO, -99% THC, -99% PM, +1% BSFC
- B20 results in 24% PM reduction w/o DPF, 27% reduction w/ DPF
BPT and Regen Rate Test Procedures

• Balance Point Temperature (BPT) – DPF temperature where rate of PM collection equals rate of PM oxidation
• BPT is determined by monitoring DPF back pressure
• Regeneration Rate Test – simulates active regeneration strategy
Balance Point Temperature Test Results

- Repeatability of test method shown with multiple repeats for each test fuel
- BPT determined by linear curve fit between two points nearest zero slope
- BPT with B20 and B100 is lower than 2007 Cert by 45 °C and 112 °C
Regeneration Rate Test Results

- Regeneration rate increases with increasing biodiesel content
- Even at 5% blend levels biodiesel PM measurably oxidizes more quickly
- 2007 Cert has positive regen rate slope, consistent with findings from BPT tests

\begin{align*}
\text{2007 Cert} & \quad y = 1.0E-05x \quad (1.6 \text{ g/L}) \\
& \quad y = 1.1E-05x \quad (1.5 \text{ g/L}) \\
\text{B5 Blend} & \quad y = -0.8E-05x \quad (1.6 \text{ g/L}) \\
& \quad y = -0.8E-05x \quad (1.3 \text{ g/L}) \\
\text{B20 Blend} & \quad y = -1.5E-05x \quad (1.6 \text{ g/L}) \\
& \quad y = -2.0E-05x \quad (1.3 \text{ g/L})
\end{align*}
Availability of NOx for Soot Regeneration

- Catalyzed DPF’s use NO₂ to oxidize soot
- There is no evidence to higher availability of NOx from biodiesel fuels

Regeneration Rate Test

- ULSD = 2.01 g/bhp-hr
- B5 = 1.97 g/bhp-hr
- B20 = 2.15 g/bhp-hr

No statistical difference (at alpha = 0.05)

Balance Point Temp Test

- B100 BPT
- B20 BPT
Soot Characterization – Industrial Collaboration w/ Cummins

- Lower combustion temperature for biodiesel soot – (TGA)
- Higher disordered carbon content for B100 soot – G/D Carbon Ratio (Raman Spec)
 \[G/D_{ULSD} = 0.836 \quad G/D_{B100} = 0.586 \]
- Higher oxygen content for B100 soot – Carbon/Oxygen Ratio (SEM-EDX)
 \[C/O_{ULSD} = 25.34 \quad C/O_{B100} = 20.34 \]
Biodiesel DPF Summary

• B20 vs. ULSD Transient test results
 – Both fuels < 0.01 g/bhp-hr PM with CCRT installed
 – PM reduction from B20 vs. ULSD still measurable with CCRT installed
 27% reduction with CCRT vs. 24% reduction without CCRT

• BPT and Regeneration Rate Testing shows measurable differences with increasing biodiesel blends
 – BPT decreased by 45 ºC with B20 and 112 ºC with B100
 – Significant differences in regeneration rate with blend levels as low as 5%

• Soot Characterization
 – TGA confirms higher reactivity of biodiesel soot
 – Higher oxygen content for biodiesel soot
 – Higher ratio of disordered carbon for biodiesel soot

• Phase II Test Plan
 – 2007 compliant engine
 – Transient testing with controlled avg exhaust temps
 – Quantify fuel penalty associated with active systems
 – Evaluate maintenance and durability issues through fleet testing