Why Light Duty Diesels Make Sense in the North American Market

12th DEER Conference
US Department of Energy

August 22, 2006
Agenda

1. Performance: it’s all about torque

2. The diesel value proposition in the US

3. 50-state emissionized diesel cost assessment

4. Summary and conclusions
US consumers have been trained to think about HP, but torque makes a vehicle fun-to-drive.

Torque and Hp Output Curves – Typical US Gasoline V6

“Usable” torque is available over a wide range of engine speeds

Peak Hp is typically achieved at maximum engine rpm’s

Torque

The force that presses you into the seat when you accelerate
Modern diesels deliver more torque at lower engine speeds . . . where we drive.

Illustrative V6 Torque Curves

- **V6 Diesel**
- **V6 Gas**

Engine Speed

Torque (lb-ft)

The Benefits of Low End Torque

Better acceleration
- City driving
- Highway passing

Better towing performance
- For trucks and SUVs

New transmissions compliment diesel engines
- 6+ speed automatics
- Enable diesels to stay in peak torque and fuel efficiency zone

Diesel Value-Add

- Peak Torque
 - Below 2000 rpm

Maximum
In the US car fleet, consumer demand for torque has increased at nearly 2% per yr.
In the light truck fleet, consumer demand for torque has been increasing at more than 2.5%.

US Fleet Torque and Hp Development – Light Trucks

<table>
<thead>
<tr>
<th>Year</th>
<th>Engine Torque (lb-ft)</th>
<th>Horsepower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>120</td>
<td>190</td>
</tr>
<tr>
<td>1994</td>
<td>140</td>
<td>195</td>
</tr>
<tr>
<td>1995</td>
<td>160</td>
<td>200</td>
</tr>
<tr>
<td>1996</td>
<td>180</td>
<td>205</td>
</tr>
<tr>
<td>1997</td>
<td>200</td>
<td>210</td>
</tr>
<tr>
<td>1998</td>
<td>220</td>
<td>215</td>
</tr>
<tr>
<td>1999</td>
<td>240</td>
<td>220</td>
</tr>
<tr>
<td>2000</td>
<td>260</td>
<td>225</td>
</tr>
<tr>
<td>2001</td>
<td>280</td>
<td>230</td>
</tr>
<tr>
<td>2002</td>
<td>300</td>
<td>235</td>
</tr>
<tr>
<td>2003</td>
<td>320</td>
<td>240</td>
</tr>
<tr>
<td>2004</td>
<td>340</td>
<td>245</td>
</tr>
<tr>
<td>2005</td>
<td>360</td>
<td>250</td>
</tr>
</tbody>
</table>

Graph Notes:
- Torque: +2.6% annual rate
- Horsepower: +3.3% annual rate
- Pump price run up

Source: Martec analysis
A significant number of consumers pay a premium for even more performance over the standard engine . . . and sacrifice fuel efficiency.

US Gas Engine Torque vs. FE Curve

- **Diesel Opportunity**
 - Peak torque reached at 40-50% lower RPM
 - 25-35% consumption reduction

Source: Martec analysis

2005 US Fleet Torque vs. Fuel Efficiency – Cars

Optional Engine Metrics
- + 30 lb-ft torque performance
- ~ $29/lb-ft dealer invoice price
- Sacrificed ~ 1.3 mpg fuel efficiency

Source: Martec analysis
In the light truck market, more than 3.5M buyers paid a premium for additional performance.

Optional Engine Metrics
- + 42 lb-ft torque performance
- ~ $18/lb-ft dealer invoice option price
- Sacrificed ~ 1.5 mpg fuel efficiency

2005 US Fleet Torque vs. Fuel Efficiency – Light Trucks

Source: Martec analysis
Diesels now dominate the US heavy-duty pickup truck market.

US Fleet Torque vs. Fuel Efficiency
HD Pickup

Diesel Value Proposition
vs. Standard Gas
- 61% torque improvement
- 28% fuel efficiency improvement
vs. Optional Gas
- 29% torque improvement @ 57% the engine speed
- 54% fuel efficiency improvement

Source: Martec analysis
Diesels are the optional performance engine of choice in Europe.

EU Fleet Torque vs. Fuel Efficiency

- **Standard Gas Engine**: 14% torque improvement, 22% fuel efficiency improvement
- **Optional Gas Engine**: 38% torque improvement at nearly half the engine speed, 38% fuel efficiency improvement
- **Diesel Engine**: 72% torque improvement, 22% fuel efficiency improvement

Diesel Value Proposition vs. Standard Gas
- 72% torque improvement
- 22% fuel efficiency improvement

Diesel Value Proposition vs. Optional Gas
- 38% torque improvement at nearly half the engine speed
- 38% fuel efficiency improvement

Source: Martec analysis
“Europe is different because fuel is so much more expensive.”

Paris, France
- $4.88/ gal. pump price
- 7,500 miles/yr.
- $900 annual fuel bill

Paris, Texas
- $2.10/gal. pump price
- 17,500 miles/yr.
- $2,300 annual fuel bill

Source: Martec analysis
Agenda

① Performance: it’s all about torque

② The diesel value proposition in the US

③ 50-state emissionized diesel cost assessment

④ Summary and conclusions
Unlike most of Western Europe, diesel fuel is taxed more heavily than gasoline in the US.

What's up with diesel pricing?

Source: EIA
US fuel refining capacity increases have crept along at <0.7% annual rate since 1990.

US refinery capacity and utilization has consistently exceeded 90% since 1993.

US demand for fuel has increased at a much faster rate since 1995:
- Gasoline demand has increased at 1.7% annual rate
- With distillate demand increasing at 2.1%

Source: EIA
Europe is exporting excess gasoline to the US, helping to depress pricing relative to diesel.

US gasoline imports have risen dramatically: > 5.5% CAGR

Half of the increased US demand met by imports
• 60% from Europe

While US distillate imports are essentially flat

EIA 2007 Forecast:
$0.07 premium for diesel…most of which is tax delta

Source: EIA
The HD pickup customer buys the diesel for low-end torque; fuel efficiency is a bonus.

Example HD Pickup Torque Curves

<table>
<thead>
<tr>
<th>Engine Speed (X100)</th>
<th>Torque (lb-ft)</th>
<th>Torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>605/820</td>
<td>Duramax 6600</td>
<td>605/820</td>
</tr>
<tr>
<td>455/617</td>
<td>Vortec 8100</td>
<td>455/617</td>
</tr>
<tr>
<td>360/488</td>
<td>Vortec 6000</td>
<td>360/488</td>
</tr>
</tbody>
</table>

HD Pickup Truck Market Sales Weighted Metrics

Base V8 OHV/SOHC gas engine
- 364 lb-ft/494 Nm @ 4012 rpm
- Real world FE combined: 13.1 mpg

Optional diesel engine
- 587 lb-ft/796 Nm @1849 rpm
- Real world FE combined: 16.8 mpg
- Option price (with auto trans): $6603

Optional V8/V10 gas engine
- 456 lb-ft/619 Nm @ 3232 rpm
- Real world FE combined: 10.9 mpg
- Option price (with auto trans): $2250

Source: Company websites
After 4.5 years, the average diesel owner has saved nearly $4200 in fuel vs. the alternative high torque option.
The diesel customer recovers a $4700 trade-in premium after 4.5 years.

Source: Martec analysis
The diesel customer is paying a 20% premium per unit of torque improvement vs. optional gas... but diesel pays you back.

Source: Martec analysis
After 4.5 years, fuel savings have reduced the effective diesel option price by one-third.

HD Pickup Trucks – $/Unit of Torque Improvement (NPV 3-yr. Fuel)

- Diesel Option
 - $4,413
 - +223/61%
 - 587lb/ft

- Gasoline Option
 - $4,250
 - +92/25%
 - 456lb/ft

Source: Martec analysis
At trade-in, the effective cost of 4.5 years of premium performance is about $1,100.

HD Pickup Trucks – $/Unit of Torque Improvement (NPV 3-yr. Fuel)

- **Effective option price at 54 mos. less:**
 - Fuel savings
 - Residual value recovery

- **Unit torque gain**
 - **Diesel Option:** +223/61% 587lb/ft
 - **Gasoline Option:** +92/25% 456lb/ft

Source: Martec analysis
The Jetta diesel customer is paying a 38% premium per unit of torque improvement vs. optional gas... but diesel pays you back.

VW Jetta – $/Unit of Torque Improvement (NPV)

- **Diesel Option**: +$1,334 Option price
- **Gasoline Option**: +$1,491

Unit torque gain

- **Diesel Option**: +33/27% 155lb/ft
- **Gasoline Option**: +51/42% 173lb/ft

Source: Martec analysis
After 4.5 years, fuel savings have recovered the total Jetta diesel option price.

Source: Martec analysis
At trade-in, the effective cost of 4.5 years of premium performance is about ($1,850).

VW Jetta – $/Unit of Torque Improvement (NPV 3-yr. Fuel)

- **Effective option price at 54 mos. less:**
 - Fuel savings
 - Residual value recovery

- **$1,065**

- **+$1,065**

- **($1,862)**

- **Unit torque gain**
 - +33/27% 155lb/ft
 - +51/42% 173lb/ft

Source: Martec analysis
In a coast-to-coast test by Autobild magazine, a diesel SUV delivered on its fuel efficiency promise. The hybrid fell short.

The HEV Loophole: Real World Efficiency Falls Short of Promise

Source: Autobild.de
Agenda

1. Performance: it’s all about torque

2. The diesel value proposition in the US

3. 50-state emissionized diesel variable cost assessment

4. Summary and conclusions
High efficiency NOx aftertreatment will be required to create a 50-state light duty diesel market.
Aftertreatment technology has entered the cost optimization phase of development.

5.0L OHV V8 bin 5 gasoline aftertreatment and evap system baseline: $285

Net aftertreatment costs
- SCR ~ $880
- LNT ~ $1415
- With potential for significant reductions through advanced “pre-mix” combustion system development

Source: Martec analysis
Engine architecture drives a range of on-engine diesel costs.

Construction of Dieselization Costs vs. V8 OHV 2V Baseline

<table>
<thead>
<tr>
<th>Potential Diesel Architecture</th>
<th>Cost Delta vs. V8 OHV 2V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L6 DOHC 4V</td>
</tr>
<tr>
<td>Downsizing credit</td>
<td>($300)(^1)</td>
</tr>
<tr>
<td>Diesel Content</td>
<td></td>
</tr>
<tr>
<td>• VGT turbo and accessories</td>
<td>$1100</td>
</tr>
<tr>
<td>• Advanced diesel FI system</td>
<td></td>
</tr>
<tr>
<td>• Injectors, HP pump, rail (s) and diesel ECM</td>
<td></td>
</tr>
<tr>
<td>• Minor mechanical upgrades</td>
<td></td>
</tr>
<tr>
<td>Net on-engine variable cost delta</td>
<td>$800</td>
</tr>
</tbody>
</table>

Net variable cost increase with SCR aftertreatment

- $1,700
- $2,200
- $2,800

1 Assumes conversion from Fe to Al block

Only variable costs captured.
A potential US full size pickup truck diesel value proposition:

<table>
<thead>
<tr>
<th>Key Assumptions</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel option price – 4.5L DOHC V6</td>
<td>$4,000</td>
</tr>
<tr>
<td>Performance increased 30% vs. class average</td>
<td>432 lb-ft torque</td>
</tr>
<tr>
<td>Fuel consumption reduced 30%</td>
<td>19 mpg</td>
</tr>
<tr>
<td>VMT over 4.5 years</td>
<td>79,000</td>
</tr>
<tr>
<td>Residual value on option = to European typical</td>
<td>64%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer Value Proposition</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option cost/lb-ft performance +</td>
<td>$40</td>
</tr>
<tr>
<td>Fuel savings – NPV @ 3-year US avg.</td>
<td>($2,580)</td>
</tr>
<tr>
<td>Saved re-fueling stops/month</td>
<td>1.2</td>
</tr>
<tr>
<td>Residual value recovery - NPV</td>
<td>$1,820</td>
</tr>
<tr>
<td>NPV cost for 4.5 years of premium performance</td>
<td>($400)</td>
</tr>
</tbody>
</table>

Excludes urea costs. At 3% dosing rate ~ $185-250 at $1.5-2.0 per gallon retail.
Heavy capital investment necessary to support light duty dieselization already exists in the US.

Existing Manufacturing Capital to Support Light Duty Dieselization

Source: Martec analysis
Agenda

① Performance: it’s all about torque

② The diesel value proposition in the US

③ 50-state emissionized diesel variable cost assessment

④ Summary and conclusions
We expect substantial growth in the diesel share of North American demand.

North American Diesel Forecast

Diesel pump price relative to regular gasoline

=/-$.07 per gal (EIA reference)

Diesel Share of North American Sales

Calendar Year

Source: Martec analysis
The diesel value proposition, demonstrated in Europe and in the HD pickup segment, will work in the North American light duty market.

Summary

Why light duty diesels make sense in the North American market.

- Diesel powered vehicles deliver the kind of performance and durability consumers want . . . and pay a premium to acquire

- They are economically viable for both manufacturers and consumers
 - Low operating cost and time savings
 - High residual value at trade-in
 - Real-world FE in line with promise

- 50-state emissions levels will be achieved through advanced combustion control and aftertreatment systems

- Diesels can deliver near term benefits to the environment and the economy by reducing demand for imported oil

THE MARTEC GROUP, INC.