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Principal objective


Develop an elementary surface reaction mechanism, 
complete with values for the kinetic parameters, that 
accounts for the observed product distribution from a 
lean NOx trap operating in the regeneration phase 
under various conditions of temperature and inlet gas 
composition. 
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Basic approach 

•	 Assemble a tentative set of reaction steps and kinetic 
parameters for NOx reduction chemistry -- some from 
catalysis literature, others hypothesized. 

•	 Use Chemkin PLUG code to simulate (pseudo-) steady 
state flow of reactant mixture through a monolith channel. 

•	 Adjust kinetic parameters (pre-exponential factors and 
activation energies) to match product distributions from 
temperature ramp experiments done at Oak Ridge. 

•	 Determine sensitivity of results to individual reactions and 
discard those found to be insignificant. 
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Basic approach (continued)


•	 Perform transient simulations for all cases in order to 
assess the validity of assuming pseudo-steady conditions. 

•	 Apply thermodynamic constraints to reduced mechanism 
and re-optimize parameters to obtain a completely 
consistent set (in progress). 
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Features of current reaction mechanism


•	 10 gas phase species: O2, NO, NO2, CO, H2, CO2, N2, H2O, 
N2O, NH3 

•	 13 surface species on precious metal (nominally platinum) 
sites: *(PT), O(PT), NO(PT), NO2(PT), CO(PT), H(PT), N(PT), 
OH(PT), H2O(PT), NH(PT), NH2(PT), NCO(PT), NH3(PT) 

•	 No homogeneous gas phase reactions 

•	 17 reversible surface reactions 

•	 9 irreversible surface reactions 
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The reversible reactions consist mostly of 
adsorption/desorptions … 

O2 + 2 *(PT) = 2O(PT) 

NO + *(PT) = NO(PT) 

NO2 + *(PT) = NO2(PT) 

CO + *(PT) = CO(PT) 

H2 + 2 *(PT) = 2H(PT) 

H2O + *(PT) = H2O(PT) 

NH3 + *(PT) = NH3(PT) 

N2 + 2 *(PT) = 2N(PT) 
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… and decomposition/recombinations.


NO2(PT) + *(PT) = NO(PT) + O(PT) 

NO(PT) + *(PT) = N(PT) + O(PT) 

OH(PT) + *(PT) = H(PT) + O(PT) 

NH(PT) + *(PT) = N(PT) + H(PT) 

NH2(PT) + *(PT) = NH(PT) + H(PT) 

NH3(PT) + *(PT) = NH2(PT) + H(PT) 
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Indirect reduction with CO can take place via two 
distinct pathways. 

Hydrogen production via water-gas shift reaction: 

H2O(PT) + CO(PT) = 2H(PT) + CO2 

Reaction of water with isocyanate intermediate: 

N(PT) + CO = NCO(PT) 

NCO(PT) + H2O(PT) => NH2(PT) + CO2 + *(PT) 
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Most remaining recombinations and atom 
transfers are treated as irreversible. 

2NO(PT) => N2 + 2O(PT)


N2O + H(PT) => N2 + OH(PT)


NO(PT) + N(PT) => N2O + 2 *(PT)


2NO(PT) = N2O + O(PT) + *(PT)


NO2(PT) + CO(PT) => NO(PT) + CO2 + *(PT)


NH(PT) + O(PT) => NO(PT) + H(PT)


NH3(PT) + O(PT) => NH2(PT) + OH(PT)


CO(PT) + O(PT) => CO2 + 2 *(PT)


H(PT) + OH(PT) => H2O(PT) + *(PT)
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Summary of experimental program 

•	 21 separate runs with inlet compositions involving NO/H2, 
NO/CO, NO2/H2, NO2/CO, N2O/H2, N2O/CO, NH3/O2, 
NH3/NO, NH3, H2, or CO 

•	 5% H2O, 5% CO2, N2 carrier gas in all runs 

•	 Temperature ramped from below 100 C to 500 C at 5 C/min 

•	 Space velocity 100,000/hr 

•	 Commercially available Umicore GDI LNT catalyst 

•	 Chemiluminescent analyzers for NO and total NOx; FTIR 
for CO, NH3, and N2O; net N2 by difference 
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For a stoichiometric NO/H2 feed, N2 formation is 
favored at high temperatures. 
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However, for NO with excess H2, large amounts 
of NH3 can be produced. 
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For 1:10 NO2/CO, a distinct two-step drop in CO 
is reasonably well reproduced by the model. 
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Even with a large excess of H2, reduction of N2O 
produces mostly N2 rather than NH3. 
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Direct oxidation of NH3 is accounted for quite 
accurately by the model. 
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Simple decomposition of NH3 is also simulated 
successfully. 
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Summary


•	 Regeneration chemistry in a lean NOx trap can be simulated 
with a reasonably compact elementary mechanism. 

•	 Water-gas shift and isocyanate pathways are both needed to 
explain observed patterns of CO consumption. 

•	 The next step is to apply formal thermodynamic constraints 
to the proposed mechanism. 

•	 Eventually the regeneration mechanism must be augmented 
with surface reactions taking place on storage (BaO) sites. 

•	 The combined storage/regeneration mechanism will allow 
the simulation of fully transient LNT cycles. 
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