

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

SPRAY STRUCTURE MEASURED WITH X-RAY RADIOGRAPHY

Alan Kastengren, Christopher Powell Center for Transportation Research, Argonne National Laboratory

> Thomas Riedel Corporate Research, Robert Bosch GmbH

Seong-Kyun Cheong, Kyoung-Su Im, Xin Liu, and Jin Wang Advanced Photon Source, Argonne National Laboratory

DOE FreedomCAR & Vehicle Technologies Program Program Managers: Kevin Stork and Gupreet Singh

Good Understanding of Spray Structure is Important in Diesel Combustion

- Performance and emissions of diesel engines are closely tied to the spray from the injector
 - Excessive penetration \rightarrow wall wetting \rightarrow UHC emissions
 - Excessive premixed combustion \rightarrow NOx emissions
- Led to progressive development of diesel injection systems to achieve better mixture preparation
 - Pump-Line-Nozzle \rightarrow Unit Injectors \rightarrow Common Rail Systems
 - Smaller injector holes
 - Higher injection pressure

Current Spray Diagnostic Techniques Inadequate

- Understanding of the atomization of diesel sprays is still incomplete
- Mechanical Measurements
 - Intrusive
- Optical Measurements
 - Can't probe internal spray structure in dense regions
 - Often not quantitative, due to strong scattering effects
- Need a nonintrusive, quantitative technique to measure sprays

Quantitative relationship between x-ray transmission and projected mass density

- I_0 Incident x-ray intensity
- *I* Measured x-ray intensity
- μ_M Fuel absorption constant, area/mass
- M Projected mass density, mass/area

$$I = I_0 e^{-M\mu_M}$$

$$M = \frac{\ln(I_0 / I)}{\mu_M}$$

Radiography Has Good Spatial and Time Resolution

Measurement Grid

- Radiography is a pointwise measurement
 - Raster injector to build up measurement grid
 - Example grid: 2250 points
 - Data in discrete columns
- Also good temporal resolution: time step 3.68 µs
 - 1 CAD at 3000 rpm = 56
 μs

Experiment Details

- Light-duty diesel common-rail injector
- Two nozzles: axial single hole
 - Hydroground
 - Subjected to 24% hydrogrinding
 - Orifice diameter: 183 μm
 - Non-hydroground
 - Orifice diameter 207 μm
 - Designed to have the same steady-state flowrate
- Injection parameters
 - Injection pressure: 250 bar
 - Injection duration: 400 and 1000 μs
 - Ambient gas: N₂
 - Ambient pressure: 1 bar
 - Averaged over 64 injections
 - Liquid: Calibration fluid with cerium additive

Spray Evolution: 400 µs Injection

Spray Evolution: 1000 µs Injection

Transverse Mass Distributions Gaussian Except Near Nozzle

- Examine the mass density of the spray along a slice perpendicular to the spray axis
- Generally Gaussian shape
 - Matches expected behavior of a fully developed jet
- Distribution has flatter top than a Gaussian within 1 mm of the nozzle
 - Suggests that there is a relatively high-density core of fuel

Radiography Can Measure Cone Angle Dynamics

- Benefits of radiography over optical cone angle measurements
 - Dynamics
 - Based on spray core, not outside of droplet cloud

Radiography Can Measure Both Leading and Trailing Edge Speed

Large Amount of Fuel in "Head Vortex"

- Partition spray into "head vortex" and trailing jet
 - While entire spray remains in measurement domain
- "Head vortex" more prominent for short duration injections
 - Nearly 80% of mass after end of short duration injection
- Trailing jet remains relatively dense for long duration injections
 - "Head vortex" contains the majority of the mass
- Implications for spray modeling

Future Work

Extend current experimental conditions

- Shrink the size of the x-ray beam: better spatial resolution
- Increase ambient pressure: density closer to engine conditions
 - Recently achieved 30 bar ambient pressure
- Experiments in multi-hole nozzles: closer to applied equipment
- Single-shot & image-based measurements
- Improved Data Analysis
 - Projection inversion: estimate true fluid density from projected mass density
 - Refine determination of the "head vortex"
 - Axial velocity determination

Future Work: Spray Axial Velocity Determination

- Axial velocity of spray in dense regions of the spray is not well known
- Measure mass-averaged axial velocity for each measurement column
 - Internal speed of liquid
- Axial velocity affects:
 - Penetration speed
 - Shear with ambient gas
 - Initialize spray breakup models
- Calculated axial velocity for a 400 µs spray from a hydroground nozzle
 - Speed from Bernoulli's equation: 236 m/s

Future Work: Spray Axial Velocity Determination

Radiography Mass Measurements Match Mechanical Measurements

- Accumulated mass as a function of time
- Generally good agreement with Bosch Rate-of-Injection meter
- Total injected mass by mechanical measurement is 334 µg, which agrees well with the x-ray data

Transverse Integrated Mass

- Examine area of Gaussian fits to transverse mass distributions
 - Indicates how densely spray is packed axially
 - In units of mass/length
 - Aids in further analysis
 - Referred to as Transverse Integrated Mass (TIM)
- Peak value corresponds to leading edge structure
- TIM increases between nozzle and leading edge, suggesting spray slows down as it moves downstream
 - Expected behavior from fully developed jet theory
 - Transverse spread coupled with axial compression

Cone Angle for 1000 µs Duration Sprays

	Cone angle based on linear fit to FWHM of Gaussian fits of transverse	Spray Event	Cone Angle
	mass distributions for $0 < x < 10 \text{ mm}$	Hydroground 475 11s ASOI	5.9°
	Far smaller angles than typically seen from optical measurements	Non-hydroground, 475 μ s ASOI	2.5°
	 Indicates that optical 	Hydroground, 644 μ s ASOI	3.9°
	measurements focus on spray	Non-hydroground, 644 μ s ASOI	3.3°
	periphery	Hydroground, 1072 μ s ASOI	1.2°
	Increase in cone angle at end of	Non-hydroground, 1072 μ s ASOI	2.8°
	spray for both nozzles	Hydroground, 1219 μ s ASOI	7.1°
	 Seen in optical measurements as well 	Non-hydroground, 1219 μ s ASOI	3.8°

Cone angle changes significantly during the spray event

Spray Width: Hydroground vs. Non-hydroground

