New Diesel Feedstocks and Future Fuels

2006 DEER Conference

Loren K. Beard
Environmental & Energy Planning
DaimlerChrysler Corporation
August 23, 2006
1. First and Second Generation Biodiesel
2. Feedstocks for FAME-Based Biodiesel
3. Second Generation Biodiesel - BTL
4. Specifications
5. “XTL” Fuels
6. Ethanol in Diesel
7. Fuel for HCCI, or “Low Temperature Combustion”
8. Conclusions
First and Second Generation Biodiesel

• Today’s Fatty Acid Methyl Ester (FAME) diesel fuel blends are considered first generation biodiesel
 – Variation in Feedstocks
 – Specifications
• Second Generation Biodiesel based on Fischer-Tropsch type fuels, via high pressure hydrogenation of fatty acids, or thermolysis
 – Choren Energy “Sun Diesel”
 – Neste NexBTL
 – Changing World Technologies
Feedstocks for FAME-Based Biodiesel

• Chrysler Group, in cooperation with Next Energy, Bosch, Delphi, Biodiesel Energy Industries, TACOM, DoE, WSU, and MSU is evaluating the impact of feedstock type on various biodiesel parameters.

• Feedstocks can include:
 – Rapeseed, Canola
 – Soy
 – Palm Oil
 – Sunflower Seed
 – Jatropha
 – Tallow

• Feedstock can impact:
 – Stability
 – Cetane
 – Cold flow properties
 – NOx emissions
 – Boiling range
 –
Next Generation Biodiesel -- BTL

• Biomass to Liquids via Gasification and Fischer-Tropsch
 – Feedstock can be forest waste, purpose-grown crops, municipal waste
 – Low to zero sulfur, aromatics
 – High cetane
 – Lubricity, cold flow need adjustment
 – Example – Choren Energy

• High Pressure Hydrogenation of Fatty Acids
 – Saturate double bonds
 – De-esterification
 – Low or zero sulfur, aromatics
 – High cetane
 – Cold flow, lubricity?
 – Example -- Neste NexBTL

• Thermolysis
 – Feedstock can be anything from turkey processing waste to auto shredder residue
 – More questions than answers about product properties
Specifications

• FAME-Based Biodiesel
 – Specifications are in place in Europe and U.S. for 100% Biodiesel as a blendstock
 • The U.S. specification needs improvements -- Work is underway
 • There is no recognized specification for B20, which is a major EPACT fuel
 • Developing data for support of a strong B20 specification is a major focus of the Next Energy program
 • Specifications should be performance-based. e.g. Iodine number is a surrogate for stability, but can exclude some feedstocks. True measures of stability are preferred
 – Second Generation Biodiesels should meet existing commercial specifications
“XTL Fuels”

• Generally are fuels based on conversion of carbon to syngas and Fischer-Tropsch
 – GTL
 – CTL
 – BTL
 – Should meet existing commercial diesel fuel specifications
 – High cetane
 – Low or near zero aromatics, sulfur
 – Lubricity and cold flow concerns
 – High CapEx
Ethanol in Diesel

• The blending of ethanol in diesel fuel, “E-Diesel” has been explored
 – Concerns have been expressed regarding the low flashpoints of these blends. Current diesel product has not been developed in anticipation of fuel with flashpoints below ASTM standards
 – Fuel economy, peak power, lubricity, and wear/corrosion issues need to be examined
 – There is no consensus specification for “E-Diesel”
Viable HCCI and “Low Temperature Combustion” systems have yet to be clearly defined

- Definition of an appropriate fuel ahead of definition of the combustion regime may not be a good use of resources
- Viable deployment of advanced combustion regimes demands that they operate on currently available fuels
Conclusions

• The Chrysler Group supports the use of alternative and renewable feedstocks for diesel fuel
• There is an urgent need for a specification for FAME-Based B20
• Further R&D is needed to reduce the processing cost for GTL, CTL, BTL and other processes
• Attempts to “optimize” HCCI fuel may be premature
• Safety issues around E-Diesel may limit its application