Numerical Modeling of HCCI Combustion

Salvador M. Aceves, Daniel L. Flowers, J. Ray Smith, Joel Martinez-Frias, Francisco Espinosa-Loza, Tim Ross, Bruce Buchholz, Nick Killingsworth, Tom Piggott, Jonas Edman, Charles Westbrook, and William Pitz
Lawrence Livermore National Laboratory

Dennis Assanis, Aris Babajimopoulos, JY Chen, Magnus Christensen, John Dec, Robert Dibble, Russ Durrett, Randy Hessel, Bengt Johansson, Magnus Sjoberg, Dick Steeper, Axel Zur Loye
External Contributors

August 24, 2006

Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.
Homogeneous charge compression ignition (HCCI) combustion is an autoignition process controlled by chemical kinetics.

Courtesy of Professor Yuuji Ikeda, Kyoto University.
The physics of HCCI combustion can be well captured with a sequential fluid mechanics-chemical kinetics model.

- High resolution CFD simulation (10^5-10^6 cells)
- Lower resolution chemical kinetics discretization (10-100 zones)

Fluid mechanics sets the temperature distribution where autoignition occurs. Combustion is very fast and therefore can be analyzed without considering mixing or turbulence.
Application of the multi-zone model:
Sandia engine running at low equivalence ratio with iso-octane

SAE Paper 2004-01-1910
Multi-zone model accurately predicts pressure traces for multiple equivalence ratios from ultra lean to mid load.

Solid lines: experimental
Dashed lines: numerical
Multi-zone model makes good predictions of emissions over the full range of operation.
Model can tell us the location in the cylinder where different pollutants originate.
Much interest exists on Premixed Charge Compression Ignition (PCCI) engines for high load and improved combustion control.

PCCI through high EGR that does not mix well with fresh charge (VVT CAI)

PCCI through early direct injection
Can we extend our sequential fluid mechanics-chemical kinetics model to model PCCI combustion?

High resolution CFD simulation (10^5 cells) Lower resolution chemical kinetics discretization (10-100 zones)

Fluid mechanics sets the temperature distribution where autoignition occurs Combustion is very fast and therefore can be analyzed without considering mixing or turbulence
We can try analyzing PCCI by doing a two-directional mapping, from KIVA to CHEMKIN and from CHEMKIN back to KIVA.

High resolution CFD solver handles mixing, advection and diffusion (~100k cells) to Chemistry handled by multi-zone detailed kinetics solver (10-100 zones).

Solutions are mapped back and forth between solvers throughout the cycle.
We have applied KIVA-MZ-MPI to analyze partially stratified combustion with a linear fuel distribution at intake valve closing.

Radial stratification imposed from centerline to liner: “Uniform,” “Shallow,” and “Steep”
KIVA-MZ-MPI results compare well with the results from a full integration of KIVA and Chemkin.
KIVA-MZ-MPI gives significant reduction in computational time, but still requires 1-2 days in 50-100 processors.
We have incorporated a neural network into KIVA3V for fast analysis of HCCI combustion and emissions (KIVA3V-ANN).

Input Variables:
- T
- P
- ϕ
- EGR

Ignition Condition:

$$I(t) = \int_{t(0)}^{t_k} \frac{1}{\tau} dt = 1$$
KIVA3V-ANN greatly reduces computational intensity
Firing cases take ~10% more time than a motored run

Calculate Ignition Integral in Each Cell

\[I(t) = \int_{t(0)}^{t_k} \frac{1}{\tau} dt \]

1. Turn on global fuel conversion mechanism
 \[C_8H_{18} + 8.5O_2 \rightarrow 8CO + 9H_2O \]
 \[CO + \frac{1}{2}O_2 \rightarrow CO_2 \]

2. Is Ignition Criterion met?
 Yes
 No

3. If No, go back to step 2.

4. If Yes, proceed with further calculations.
Results agree well with experiments and multi-zone model over a wide range of conditions (geometry, ϕ, CR, intake pressure)

Data from Sandia Livermore, SAE 2003-01-0752, Scalloped piston, iso-octane, $\phi=0.1-0.26$, CR=18:1, 120 kPa intake
KIVA3V-ANN predicts similar spatial evolution of combustion as KIVA3V-MZ-MPI for “normal” HCCI.
KIVA3V-ANN predicts similar spatial evolution of CO during combustion as KIVA3V-MZ-MPI for “normal” HCCI
At $\phi=0.10$, KIVA3V-ANN predicts high CO emissions because reaction mechanism misses the oxidation of CO in the central core.
Summary: HCCI is dominated by chemical kinetics, and can therefore be well characterized by a computationally efficient segregated fluid mechanics-multi-zone chemical kinetics model.
Summary: Our new fully integrated parallelized fluid mechanics-chemical kinetics code (KIVA3V-MZ-MPI) considers the effect of mixing and therefore applies to partially stratified combustion.

High resolution CFD solver handles mixing, advection and diffusion (~100k cells)

Chemistry handled by multi-zone detailed kinetics solver (10-100 zones)

Solutions are mapped back and forth between solvers throughout the cycle.
Summary: We are developing accurate HCCI and PCCI analysis techniques with greatly improved computational efficiency.

- Direct integration of KIVA and Chemkin

 Years of computing time
 in single processor computer

- Multi-zone KIVA-Chemkin

 Days of computing time
 in single processor computer

- KIVA-Artificial neural network

 Hours of computing time
 in single processor computer