Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel

Diesel Engine Emissions Reduction Conference
August 25th, 2005

Matthew Thornton, National Renewable Energy Laboratory
Marek Tatur, Heather Tyrer, Dean Tomazic, FEV Engine Technology
Phil Weber and Cynthia Webb, SwRI
Outline

• Project Overview
• Program goals and objectives
• Hardware overview
• Test procedures
• Test results
• Summary and outlook
APBF-DEC Projects

<table>
<thead>
<tr>
<th>NO$_x$ Adsorber/DPF</th>
<th>SCR/DPF</th>
<th>Lubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV</td>
<td>SwRI</td>
<td>Ricardo</td>
</tr>
<tr>
<td>1.9L TDI</td>
<td>6.6L Isuzu Duramax</td>
<td>15L Cummins ISX</td>
</tr>
<tr>
<td>Audi A4 Avant</td>
<td>Chevrolet Silverado</td>
<td></td>
</tr>
</tbody>
</table>
Project Objectives for LD NOx Adsorber Projects: Examine fuel property effects on NAC/DPF systems

Approach:
- Demonstrate low emissions potential of diesel engines equipped with advanced fuel, NOx adsorbers, DPFs, EGR, double-wall exhaust
 - Goal: Tier 2 Bin 5 (0.07 g/mi NOx 0.01 g/mi PM)
- Age systems with Ultra Low S fuel for up to 2200 hrs
 - Periodic emissions evaluations during aging (before and after NOx adsorber desulfation)
 - Periodic unregulated emissions measurement with 15-ppm S refinery product
 - NOx adsorber desulfation performed on time based schedule
Project Outline

Project divided into three Tasks:

- Hardware procurement and operational strategy development
- System integration and optimization
- Performance and aging evaluation
 - Age ECS to 2000-2200 hours with 15-ppm S Fuel
 - 2,200 hours equal full useful lifetime of 120,000 miles
 - Emissions evaluation procedures performed every 100-200 hrs
 - Desulfations performed every 150-200 hours to start then 100 hours (and every 50 hours at the end for the Passenger Car platform)
Project Hardware Overview

Passenger Car

Engine Specification
Arrangement: In-Line 4-Cylinder
Displacement: 1.9 L
Rated Power: 100 kW @ 4000 rpm
Max. Torque: 330 Nm @ 2000 rpm

Medium-Duty Engine

Engine Specification
Arrangement: 8-Cylinder V
Displacement: 6.6 L
Rated Power: 224 kW @ 3100 rpm
Max. Torque: 705 Nm @ 1800 rpm
Passenger Car Project In-Line Emission Control System

Engine

Pre-Catalyst

Underbody NAC

CDPF

ECS-A: DOC + NAC
- Cell Density: 400 cpsl
- Volume: 1.34 L
- Diameter: 4.16 inch
- Length: 6 inch
- Wall Thickness: 4.5 mil

ECS-B: NAC
- Cell Density: 350 cpsl
- Volume: 2.5 L
- Diameter: 5.66 inch
- Length: 6 inch
- Wall Thickness: 5.5 mil

All ECS: NAC
- Cell Density: 350 cpsl
- Volume: 2.5 L
- Diameter: 5.66 inch
- Length: 6 inch
- Wall Thickness: 5.5 mil

All ECS: CDPF
- Cell Density: 200 cpsl
- Wall Thickness: 14 mil
- Substrate Material: SiC
- Volume: 2.5 L
- Diameter: 5.66 inch
- Length: 6 inch
- Cell Geometry: Square

Substrate Material: Cordierite
Cell Geometry: Square
Test Procedures

Engine Dynamometer Test Cell:

Pre-Desulfation Procedure

<table>
<thead>
<tr>
<th>Run</th>
<th>1/3 PM Sample</th>
<th>1 PM Sample</th>
<th>1 PM Sample</th>
<th>1 PM Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLA4</td>
<td>HLA4</td>
<td>US06</td>
<td>HFET</td>
</tr>
<tr>
<td>2</td>
<td>HLA4</td>
<td>US06</td>
<td>HFET</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HLA4</td>
<td>US06</td>
<td>HFET</td>
<td></td>
</tr>
</tbody>
</table>

1 test cycle = 1 gas sample = 30 gas samples
1 set of cycles = 1 PM sample = 10 PM samples

Post-Desulfation Procedure

<table>
<thead>
<tr>
<th>Run</th>
<th>1/2 PM Sample</th>
<th>1 PM Sample</th>
<th>1 PM Sample</th>
<th>1 PM Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLA4</td>
<td>HLA4</td>
<td>US06</td>
<td>HFET</td>
</tr>
<tr>
<td>2</td>
<td>HLA4</td>
<td>US06</td>
<td>HFET</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HLA4</td>
<td>US06</td>
<td>HFET</td>
<td></td>
</tr>
</tbody>
</table>

1 test cycle = 1 gas sample = 20 samples
1 set of cycles = 1 PM sample = 7 PM samples
Passenger Car Project Test Results

NOx Emission Trends
Passenger Car Project Test Results

NOx Adsorber Conversion Efficiency
Passenger Car Project Test Results

NOx Adsorber Deterioration

Change in NOx Conversion (% of Engine Out NOx) Between Desulfations

-80% -70% -60% -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80%

Age (hours)

NOx Conversion

- Difference

- Difference Trend
Passenger Car Project Test Results

Desulfation Effectiveness

![Chart showing increase in NOx conversion (% of engine out NOx) at each desulfation over age (hours). The chart displays data points and trend lines for the difference (post-pre) and the difference trend.]
Passenger Car Project Test Results

PM Emission Trends

![Graph showing PM emission trends](image-url)
Medium-Duty Engine Project Test Results

NOx Emission Trends

![Graph showing NOx emission trends over time.](image-url)
Medium-Duty Engine Project Test Results

NOx Adsorber Conversion Efficiency
Medium-Duty Engine Project Test Results

NOx Adsorber Deterioration

Change in NOx Conversion (% of Engine Out NOx) Between Desulfations

-14.0% -12.0% -10.0% -8.0% -6.0% -4.0% -2.0% 0.0%

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

NOx Conversion

Age (hours)

Difference Difference Trend
Medium-Duty Engine Project Test Results

Desulfation Effectiveness

Increase in NO\textsubscript{X} Conversion (% of Engine Out NO\textsubscript{X}) at Each Desulfation

![Graph showing NO\textsubscript{X} conversion over time with desulfation effectiveness]
Medium-Duty Engine Project Test Results

PM Emission Trends

![Graph showing PM emission trends over age (hours)]
Summary

• Fresh NOx adsorber system in conjunction with 15ppm sulfur fuel can achieve Tier 2 Bin 5 NOx emission levels for both platforms
• Desulfation strategies are effective in recovering NOx adsorber performance with some deterioration through 2000 hours for both platforms
• Aged and desulfurized NOx adsorber system in conjunction with 15ppm sulfur fuel achieved Tier 2 Bin 5 NOx emission levels for the passenger car platform, achieved 85-90% NOx conversion for the MD Engine platform
• DPF in conjunction with 15ppm sulfur fuel can achieve Tier 2 Bin 5 PM emission levels throughout aging for both platforms
• Detailed emissions information (e.g. CO, HC, and Unregulated species) are included in final report
Program Participants

<table>
<thead>
<tr>
<th>Automobile:</th>
<th>Government:</th>
<th>Emission Control:</th>
<th>Energy/Additives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DaimlerChrysler</td>
<td>CARB/SCAQMD</td>
<td>Argillon</td>
<td>American Chemistry Council</td>
</tr>
<tr>
<td>Ford</td>
<td>DOE</td>
<td>ArvinMeritor</td>
<td>API</td>
</tr>
<tr>
<td>GM</td>
<td>EPA</td>
<td>Benteler</td>
<td>BP</td>
</tr>
<tr>
<td>Toyota</td>
<td>NREL</td>
<td>Clean Diesel Tech.</td>
<td>Castrol</td>
</tr>
<tr>
<td></td>
<td>ORNL</td>
<td>Corning</td>
<td>Chevron Oronite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delphi</td>
<td>Chevron</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Donaldson Co.</td>
<td>Ciba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engelhard</td>
<td>Conoco-Phillips</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Johnson Matthey</td>
<td>Crompton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MECA</td>
<td>Ergon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NGK</td>
<td>Ethyl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhodia</td>
<td>ExxonMobil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robert Bosch Corp.</td>
<td>Infineum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STT Emtec AB</td>
<td>Lubrizol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tenneco Automotive</td>
<td>Marathon Ashland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3M</td>
<td>Motiva</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umicore</td>
<td>NPRA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pennzoil-Quaker State</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shell Global Solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valvoline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engines:</th>
<th>Technology:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caterpillar</td>
<td>Battelle</td>
</tr>
<tr>
<td>Cummins</td>
<td></td>
</tr>
<tr>
<td>Detroit Diesel</td>
<td></td>
</tr>
<tr>
<td>EMA</td>
<td></td>
</tr>
<tr>
<td>International Truck & Engine</td>
<td></td>
</tr>
<tr>
<td>John Deere</td>
<td></td>
</tr>
<tr>
<td>Mack Trucks</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgments

• Department of Energy, Office of FreedomCAR and Vehicle Technologies
• ORNL
• Battelle
• MECA
• APBF-DEC Industry partners for financial and in-kind support
• Technical Team members and their companies for their support and contributions