Design Challenges of Locomotive Diesel Engines

Roy J. Primus
GE Global Research Center

11th Diesel Engine Emissions Reduction Conference

Chicago, Illinois
August 24, 2005
Typical Locomotive Configuration

- The longest locomotives are 74-76 feet (track radius restrictions)
- Average height is 15 feet and 5-1/4 inches (infrastructure restrictions)
- Fully-serviced locomotives weigh up to 420,000 pounds (35 ton/axel)
- The life expectancy for locomotives is approximately 20 years
Locomotive Operation

- **Locomotive Consist**
 - Two or more locomotives in same train
 - Can face either forward or backward
 - Can be located anywhere in the train

- **Tunnel operation**
 - Trailing locomotive(s) see exhaust from lead loco(s)
 - Effective ambient > 180 F (emissions, durability)

- **Shock & Bending loads**
 - 3g's longitudinal with more than 400,000 lbs
 - Mechanical loading on pipes & attachments
GE Evolution Locomotive Diesel Engine

Four-stroke
Direct-injected (unit pump system)
Single-stage turbocharged (axial-radial)
Hybrid air-to-air charge air cooling

Bore mm 250
Stroke mm 320
Displacement l/cyl 15.7
Cylinders - 12
Total Displacement l 188
Power hp 4500
Power/cyl hp/cyl 375
BMEP bar 20.3
Speed rev/min 1050
Mean Piston Speed m/s 11.2
Locomotive Operation Points - Notches

Percent of Maximum Power

Idle DB2 N1 N2 N3 N4 N5 N6 N7 N8
Emissions Certification

• Ambient condition range
 > Ambient temperature from 45°F to 105°F
 > Sea level to 7000 ft

• Useful life
 > $7.5 \times (\text{rated HP}) \text{ [MW-hrs]}$
 > 33,750 \text{ MW-hrs for a 4500hp engine}
 > 10 years

• In-use testing
EPA Locomotive Switcher Weighting

<table>
<thead>
<tr>
<th>Cycle Weighting factors</th>
<th>EPA switcher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notch</td>
<td>0.299</td>
</tr>
<tr>
<td>Low Idle</td>
<td>0.299</td>
</tr>
<tr>
<td>Idle</td>
<td>0.299</td>
</tr>
<tr>
<td>DB-2</td>
<td>0.000</td>
</tr>
<tr>
<td>N1</td>
<td>0.124</td>
</tr>
<tr>
<td>N2</td>
<td>0.123</td>
</tr>
<tr>
<td>N3</td>
<td>0.058</td>
</tr>
<tr>
<td>N4</td>
<td>0.036</td>
</tr>
<tr>
<td>N5</td>
<td>0.036</td>
</tr>
<tr>
<td>N6</td>
<td>0.015</td>
</tr>
<tr>
<td>N7</td>
<td>0.002</td>
</tr>
<tr>
<td>N8</td>
<td>0.008</td>
</tr>
<tr>
<td>Total</td>
<td>1.000</td>
</tr>
</tbody>
</table>
EPA Locomotive Freight Weighting

Cycle Weighting factors

<table>
<thead>
<tr>
<th>Notch</th>
<th>EPA</th>
<th>Freight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Idle</td>
<td>0.190</td>
<td>0.380</td>
</tr>
<tr>
<td>Idle</td>
<td>0.190</td>
<td>0.380</td>
</tr>
<tr>
<td>DB-2</td>
<td>0.125</td>
<td>0.250</td>
</tr>
<tr>
<td>N1</td>
<td>0.065</td>
<td>0.130</td>
</tr>
<tr>
<td>N2</td>
<td>0.065</td>
<td>0.130</td>
</tr>
<tr>
<td>N3</td>
<td>0.052</td>
<td>0.104</td>
</tr>
<tr>
<td>N4</td>
<td>0.044</td>
<td>0.088</td>
</tr>
<tr>
<td>N5</td>
<td>0.038</td>
<td>0.076</td>
</tr>
<tr>
<td>N6</td>
<td>0.039</td>
<td>0.078</td>
</tr>
<tr>
<td>N7</td>
<td>0.030</td>
<td>0.060</td>
</tr>
<tr>
<td>N8</td>
<td>0.162</td>
<td>0.324</td>
</tr>
<tr>
<td>Total</td>
<td>1.000</td>
<td>2.000</td>
</tr>
</tbody>
</table>

- **Engine Speed (rpm)**
 - **Torque (ft-lbs)**

Notation:
- LI: Low Idle
- Idle
- DB2
- N1 - N8

Legend:
- N1: 400 rpm
- N2: 600 rpm
- N3: 800 rpm
- N4: 1000 rpm
- N5: 1200 rpm
- N6: 1400 rpm
- N7: 1600 rpm
- N8: 1800 rpm
EPA Locomotive Standards

<table>
<thead>
<tr>
<th>Tier</th>
<th>Cycle</th>
<th>NOx</th>
<th>PM</th>
<th>HC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 0</td>
<td>Switcher</td>
<td>14.0</td>
<td>0.72</td>
<td>2.10</td>
<td>8.0</td>
</tr>
<tr>
<td>(1973-2001)</td>
<td>Line-haul</td>
<td>9.5</td>
<td>0.60</td>
<td>1.00</td>
<td>5.0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>Switcher</td>
<td>11.0</td>
<td>0.54</td>
<td>1.20</td>
<td>2.5</td>
</tr>
<tr>
<td>(2002-2004)</td>
<td>Line-haul</td>
<td>7.4</td>
<td>0.45</td>
<td>0.55</td>
<td>2.2</td>
</tr>
<tr>
<td>Tier 2</td>
<td>Switcher</td>
<td>8.1</td>
<td>0.24</td>
<td>0.60</td>
<td>2.4</td>
</tr>
<tr>
<td>(2005-?)</td>
<td>Line-haul</td>
<td>5.5</td>
<td>0.20</td>
<td>0.30</td>
<td>1.5</td>
</tr>
</tbody>
</table>
NOx Emissions

NOx formation function of Temperature and Time

Data from SAE 2000-01-1177
EPA Locomotive Rule Making Timeline

- ANPRM published June 29, 2004
- Comment period closed August 30, 2004
- NPRM expected ~ Q1-2006
- Final rule expected ~ 2007
- 500 ppm sulfur fuel June 2007
- Compliance time frame
 > Not clear if 1 or 2 steps
 > Expect new reg. ~ 2011
- 15 ppm sulfur fuel 2012
Summary

• Consist operation and tunnel environment are major design concerns
• The lower speed of the locomotive engine provides longer residence time for NOx formation
• Soot not as speed sensitive as NOx (combination of formation and oxidation)
• Expect EPA to publish NPRM for Tier 3/4 locomotive emissions standards in early 2006