In order to design a thermally durable NO\textsubscript{x} trap, there is a need to understand the changes in the microstructure of materials that occur during various modes of operation (lean, rich, and lean-rich cycles). This information can form the basis for selection and design of new NO\textsubscript{x} trap materials that can resist deterioration under normal operation.

Microstructural Changes in Production Lean NO\textsubscript{x} Traps on Aging

- **Pulsator Aging**
 - Lean and rich aged samples showed that the sintering of platinum particles occurs during aging and that barium migrates into the ceria-zirconia layer.
 - Both of these factors reduce platinum-barium oxide surface area where NO\textsubscript{x} can be adsorbed.
 - Sintering is less severe for lean-aged samples than for rich-aged samples.

- **Dyno Aging**
 - The analysis of on-vehicle evaluated samples after 32,000 km and 50,000 km showed that the bulk of precious metal sintering occurred in the early stages of on-vehicle aging.

Model Catalysts

- **Catalyst A**: 2\%Pt, 10\%CeO\textsubscript{2}-ZrO\textsubscript{2}-90\%BaO•6Al\textsubscript{2}O\textsubscript{3}
 - Impregnate alumina with barium salts and thermally treat in air to obtain BaO•6Al\textsubscript{2}O\textsubscript{3}.
 - Impregnate BaO•6Al\textsubscript{2}O\textsubscript{3} with lanthanum salts and thermally treat in air to obtain Lanthanum alumina.
 - Ball mill 2\%La\textsubscript{2}O\textsubscript{3}-98\%BaO•6Al\textsubscript{2}O\textsubscript{3} with commercial CeO\textsubscript{2}-ZrO\textsubscript{2} and Pt salts and thermally treat to obtain model NO\textsubscript{x} trap.

- **Catalyst B**: Pt/Al\textsubscript{2}O\textsubscript{3}
 - Impregnate alumina with Pt salts and thermally treat to obtain model NO\textsubscript{x} trap.

- **Catalyst C**: 2\%Pt, 5\%MnO\textsubscript{2}-93\%CeO\textsubscript{2}-ZrO\textsubscript{2}-90\%BaO•6Al\textsubscript{2}O\textsubscript{3}
 - Impregnate 2\%Pt-98\%CeO\textsubscript{2}-ZrO\textsubscript{2} with manganese salts and thermally treat to obtain model NO\textsubscript{x} trap.

Aging Studies on Ex Situ Reactor

Lean-Rich Cycle Aging (500°C, 4 h) of Model Catalyst A [240 s - 60 s cycle]

- **Fresh Sample**
 - Pt particle size in 0.5 - 2.5 nm range.
 - Change in location.

- **After 4 hours**
 - Pt particle size in 0.5 - 4.3 nm range.
 - Change in location.

- **After 8 hours**
 - Pt particle size in 0.5 - 4.5 nm range.
 - No change in location.

- **After 16 hours**
 - No further change compared to 12 hour samples.

Combining Theory and Experiments

Is it possible to examine computationally complex but experimentally simple systems by both theoretical and experimental methods?

Forecast Improvements

- **Optimize Performance**
 - Pt, Pd, Rh and/or Ni/Al\textsubscript{2}O\textsubscript{3} with support.

Density Functional Theory Calculations

- Generalized gradient approximation (PW91 functional).
- Spin polarization to capture correct ground state.
- Oxidation energy of PtxOy clusters calculated as:
 \[E = E_{\text{ox}} - E_{\text{red}} = (\text{Pt-O}) E_{\text{Pt}} + E_{\text{O}} \]

- Convergence of results verified.

Theoretical Model tells us that…

- Pure Pt clusters are easily oxidized; supported Pt nanoparticles should primarily be in oxidized forms in an oxidizing environment.
- +4 oxidation state (i.e., Pt:O=1:2) is favored thermodynamically for Pt atoms.
- Pt clusters on a variety of oxidized supports differ in oxidation state.
- Support properties of O\textsubscript{2}, O\textsubscript{2-} and CO on Pt clusters are very different compared to an extended Pt surface.
- Experimental results suggest that Pt oxide clusters are structurally complex, although patterns can be detected and may aid in future analysis.

Experimental Model Catalyst…

- Pt clusters on a variety of oxidized supports differ in oxidation state.
- Theoretical calculations suggest that the Pt atom should be oxidized.

Publications

Acknowledgement

This research was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, U.S. Department of Energy under contract DE-AC05-00OR22725 with UTC-Battelle, LLC.