Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier 2 Bin 5

DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program (DE-FC26-01NT41103)

Diesel Engine Emission Reduction Conference

Christine Lambert

August 25, 2005
Presentation Overview

• Program Overview
• Results with Fresh Catalysts
• System Durability
• Improved Oxidation & NOx Catalyst Development
• Exhaust Gas Sensor Development
• Urea Infrastructure Study
• Conclusions
Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier 2 Bin 5

Program Overview
DOE Ultra-Clean Fuels Program

Outline of Ford’s program to achieve Tier 2 FTP emission standards for 2007 using low sulfur diesel fuel as an enabler for a high efficiency aftertreatment system.

Primary Contractor

<table>
<thead>
<tr>
<th>Research and Advanced Engineering</th>
<th>Phase I - Initial build/test phase (July 01-July 02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish baseline emission control system</td>
<td></td>
</tr>
<tr>
<td>Deliver engine dynamometer NOx and PM test results</td>
<td></td>
</tr>
<tr>
<td>Deliver prototype vehicle NOx and PM test results</td>
<td></td>
</tr>
<tr>
<td>Deliver urea delivery (infrastructure) prototype</td>
<td></td>
</tr>
</tbody>
</table>

Subcontractors

<table>
<thead>
<tr>
<th>ExxonMobil</th>
<th>Phase II - System/component optimization phase (July 02-July 04)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research and Engineering</td>
<td></td>
</tr>
<tr>
<td>Define final system hardware components</td>
<td></td>
</tr>
<tr>
<td>Deliver NOx and PM performance data from fresh system</td>
<td></td>
</tr>
</tbody>
</table>

Catalyst Suppliers

<table>
<thead>
<tr>
<th>Engelhard</th>
<th>Phase III - Durability phase (July 04-Dec 05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>jmCat</td>
<td>Definition of durability test procedure</td>
</tr>
<tr>
<td>Johnson Matthey</td>
<td>Final NOx and PM emission levels</td>
</tr>
<tr>
<td>umicore</td>
<td>Final report for the completed program</td>
</tr>
</tbody>
</table>
FEV Program

Engine Dynamometer
- Urea SCR/CDPF optimization
- Transient FTP testing

Emission Control System Durability
- 120K miles on engine dyno
ExxonMobil Program

Urea Infrastructure
- Co-fueling concept
- Cold-climate urea usage
- Infrastructure studies

Fuel Development
- Make and use fuel, which will be typical of 2007 production with 15 ppm sulfur cap
Diesel Fuel Properties

- ExxonMobil blended 14,000 gallon batch to represent typical 2007 ULSD

<table>
<thead>
<tr>
<th>Fuel Property</th>
<th>Est. Avg. ‘06 Diesel Properties</th>
<th>Proposed DOE Program Min/Max</th>
<th>Program Delivered</th>
<th>Proposed 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur, ppm</td>
<td>15*</td>
<td>10 / 15</td>
<td>12.5</td>
<td>7 / 15</td>
</tr>
<tr>
<td>Density, kg/m³</td>
<td>850</td>
<td>820 / 850</td>
<td>841.1</td>
<td>839 / 865</td>
</tr>
<tr>
<td>Aromatics, vol. %</td>
<td>32</td>
<td>25 / 32</td>
<td>29.5</td>
<td>27 min</td>
</tr>
<tr>
<td>Polyaromatics, wt. %</td>
<td>10</td>
<td>6 / 11</td>
<td>11.0</td>
<td>no spec</td>
</tr>
<tr>
<td>Cetane number</td>
<td>46</td>
<td>44 / 48</td>
<td>44.9</td>
<td>40 / 50</td>
</tr>
<tr>
<td>T50, C</td>
<td>267</td>
<td>250 / 280</td>
<td>249</td>
<td>243 / 282</td>
</tr>
<tr>
<td>T90, C</td>
<td>306</td>
<td>300 / 320</td>
<td>307</td>
<td>293 / 332</td>
</tr>
</tbody>
</table>

* As delivered to the vehicle
Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier 2 Bin 5

Results with Fresh Catalysts
Exhaust System for 6000 lb Prototype LDT

Targets: 0.07 g/mi NOx, 0.01 g/mi PM

- Engine-out NOx lowered by 40% with increased EGR*
- Low tailpipe NOx achieved with rapid warm-up strategy
 - lower thermal mass upstream of catalyst system
 - engine calibration changes during cold start (post injection & inc. idle speed)

* Tradeoffs for lower engine-out NOx include lower fuel economy & higher PM.
FTP-75 Tailpipe Emissions and Conversions

Fresh catalysts on Engine Dyno

- PM ~ 1 mg/mi
- Fuel penalty for NOx control is <1%

<table>
<thead>
<tr>
<th>Bag 1</th>
<th>Bag 2</th>
<th>Bag 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>THC</td>
<td>CO/10</td>
<td>NOx</td>
</tr>
<tr>
<td>0.037 (98%)</td>
<td>0.031 (87%)</td>
<td>0.023 (84%)</td>
</tr>
<tr>
<td>0.030 (97%)</td>
<td>0.032 (97%)</td>
<td>0.044 (93%)</td>
</tr>
<tr>
<td>0.015 (96%)</td>
<td>0.015 (91%)</td>
<td>0.005 (99.9%)</td>
</tr>
<tr>
<td>0.015 (97%)</td>
<td>0.006 (98%)</td>
<td>0.0002 (99.9%)</td>
</tr>
<tr>
<td>0.0005 (99.9%)</td>
<td>0.0005 (99.9%)</td>
<td>0.0005 (99.9%)</td>
</tr>
<tr>
<td>NMOG</td>
<td>0.083 (97%)</td>
<td>0.044 (93%)</td>
</tr>
</tbody>
</table>
Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier 2 Bin 5

System Durability
Durability Test Definition

Ford High Speed Cycle (HSC)

- average speed = 47 mph
- max speed = 75 mph
Engine Dynamometer Durability Testing
50K Mile Performance Evaluation

Tailpipe Emission Levels Over Simulated FTP-75 Vehicle Cycle
Urea SCR and CDPF Emission Control System

Tier 2 – Bin 5 Standard, 120k

- THC
- CO
- NOx
Vehicle Testing of 50K mi Catalysts

6000 lb LDT FTP-75 Emissions

NO RAPID WARM-UP

<table>
<thead>
<tr>
<th></th>
<th>THC</th>
<th>NMHC</th>
<th>CO</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag 1</td>
<td>0.043</td>
<td>0.024</td>
<td>0.091</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>(94%)</td>
<td>(83%)</td>
<td>(84%)</td>
<td>(65%)</td>
</tr>
<tr>
<td>Bag 2</td>
<td>0.037</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(97%)</td>
<td>(94%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bag 3</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(90%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PM ~ 2-5 mg/mi

Tier 2 - Bin 5 Standard, 120k (Catalyst efficiency)
Vehicle Testing
Predicted NOx Emissions with 50K mi Catalysts and Rapid Warm-up on 6000 lb LDT
Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier 2 Bin 5

Improved Oxidation & NOx Catalyst Development
Oxidation Catalyst Evaluation

NO → NO₂ Conversion

120K mi Simulated Aging

% NO₂ of Total NOx

Temperature (C)

- AB002
- AA002
- AF002

30K h⁻¹
Improved Oxidation Catalyst Evaluation
HC Conversion
120K mi Simulated Aging

Conversion Efficiency

Temperature (Deg C)

0% 25% 50% 75% 100%

AB003
AA013
AF005

30K h⁻¹
Comparison of Improved SCR Catalysts
Aged 64 hrs at 670°C, Evaluated with NO only

NO Conversion (%) vs. Temperature (°C) for Catalysts A, B, C, D at 30K h⁻¹
Comparison of Improved SCR Catalysts
Aged 64 hrs at 670°C, Evaluated with NO only

![Graph showing NO conversion vs. temperature for different catalysts and reaction rates.]

- C, 30K h⁻¹
- C, 100K h⁻¹
- D, 30K h⁻¹
- D, 100K h⁻¹

Temperature (°C)

NO Conversion (%)
Comparison of Improved SCR Catalysts
Ammonia Stored on Degreened Catalysts

NH₃ stored (mg/in³)

Catalyst temperature (°C)

30K h⁻¹
350ppm NH₃
Comparison of Improved SCR Catalysts
Ammonia Stored on Aged Catalysts
64h at 670°C

Catalyst temperature (°C)
NH₃ stored (mg/in³)

A, dg
A, HT aged
B, dg
B, HT aged

30K h⁻¹
350ppm NH₃
Comparison of Improved NOx Catalysts
Alternative Ammonia-based Catalyst Systems

Rich Operation:

- NOx stored on LNT is released during rich event and reduced to N₂ and NH₃.
- Desorbed NOx + NH₃ react over SCR during rich event.
- Excess ammonia is stored on SCR.

Lean Operation:

- During lean operation NOx slip through LNT is consumed by NH₃ stored on SCR.
Comparison of Improved NOx Catalysts
Alternative Ammonia-based Catalyst Systems
Flow reactor, 40s lean, 5s rich, 120K mi aged

% Gross NOx Conversion vs Inlet Temperature (°C)

- LNT
- LNT-SCR
- LNT A
- LNT A-LNT A
- LNT A-SCR 1
- LNT A-SCR 2

2-LNT
Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier 2 Bin 5

Exhaust Gas Sensor Development
Little sensitivity to water for NH$_3$ > 50 ppm.
Exhaust Gas Sensor Development

Vehicle Data with Ammonia Sensor

FTP-75 Emission Cycle

![Graph showing NH₃ ppm over time](image)
Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier 2 Bin 5

Urea Infrastructure Study
Urea Infrastructure Study
Co-fueling Hardware Status

• Co-fueling hardware completed
 – Improved co-axial nozzle with fill-neck insert provided by a major nozzle manufacturer
 – Urea pumping system with flow meter
 – Urea tank integral with dispenser
 – Urea heating system
 – 32.5 wt% urea in water assumed
Urea Infrastructure Study

Co-fueling Hardware Testing

• Tested diesel fuel / urea solution co-fueling using a co-axial nozzle system

• Testing of improved nozzle and insert showed better alignment and improved sealing
 • 1st version: 0.5 vol.% leak rate of urea into diesel
 • 2nd version: < 0.1 vol.% leak rate of urea into diesel

• Cross contamination of urea into diesel remains a concern for co-axial design due to urea line connection within the diesel re-fueling stream
Conclusions

- The objective of 0.07 g/mi NOx and 0.01 g/mi PM on the FTP was met with a fresh emission control system of Urea SCR and CDPF.
- HC, CO & PM emissions at 50K mi met Tier 2 Bin 5.
- NOx emissions at 50K mi were 0.09 g/mi and were predicted to be 0.05 g/mi (Bin 5) if rapid warm-up during cold-start had been available.
- Current DOC AB had highest NO₂ production after aging. New DOC AF had lower HC lightoff T but less NO₂ production.
- New SCR catalysts were developed that have improved NOx conversion after 120K mi equivalent aging.
- Long-term lean aging at 670°C decreases the ability of base metal/zeolite SCRs to store ammonia.
- SCR catalysts were used downstream of reduced size LNTs with favorable results.
- Prototype NH₃ sensors were successfully tested on a vehicle.
- Cross contamination of urea into diesel remains a concern for co-axial design due to urea line connection within the diesel re-fueling stream.
Acknowledgements

Ford
Brendan Carberry, Dick Chase, Doug Dobson, Bob Hammerle, Santhoji Katare, Jeong Kim, Dave Kubinski, Paul Laing, Doina Magda, Mike Levin, Cliff Montreuil, Sandip Shah, Rick Soltis, Devesh Upadhyay, Michiel van Nieuwstadt, Rachel Snow, Gary Stokes, Nandita Vaideeswaran, Scott Williams

FEV
Erik Koehler, Dean Tomazic

Exxon Mobil
Rich Grosser, Marcus Moore, Mike Noorman, Charlie Schleyer