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Agenda

• Background
• Systems approach
• Controls Development
• Heat Flux Measurements
• Optical Engine Results
• HCCI fuel effects
• Conclusions



Engine Industry Challenges 

• Improving fuel efficiency while meeting much more 
stringent emissions standards is a tremendous technical
challenge.
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Controls Challenges

• Need robust method for detecting start of combustion 
(cylinder pressure sensor, ion sensor, torque 
fluctuation on crank, knock sensor, strain gauged head 
bolts, microphones, etc.)

• Transient operation, transitioning to different 
speed/load points

• Activities:
– Sensor evaluation
– RPAC installation, feedback control capability on multi
– Preliminary controls architecture developed
– Cylinder pressure feedback implemented
– Basic phasing control demonstrated using intake valve 

actuation (IVA) to balance cylinders
– Speed and load step tests demonstrated



VVA for Cylinder Balancing

Feedback off Feedback on



300 RPM Transition, Constant Load

Baseline transition strategy Optimized transition strategy
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Heat Rejection Comparison

• Compared HCCI and conventional combustion with 
CGI (clean gas induction) at a part load operating 
condition

• For same CGI rate, NOx and BSFC, the engine block 
jacket water heat rejection was >50% higher for 
HCCI compared to conventional combustion (other 
heat rejection values similar)

• Is there significantly higher in-cylinder heat transfer 
to block/head/piston? (due to hotter bulk gas 
combustion near walls, short burn duration?)



Related Research

• Tsurushima et al. premixed 
DME/Propane HCCI (SAE 
2002-01-0108)

• Chang et al. gasoline HCCI 
(SAE 2004-01-2996)



• Medtherm-heat flux probe
– Two j-type TC, front side and back side
– Front side has micro-second response time
– Installed in head between exhaust valves

• Instrumented liner
– 20 k-type TC radially
– ~ 15 mm from liner top
– Results showed no major 

difference in liner temps
between HCCI and 
conventional combustion

Heat Flux Measurement



Knock Effect on Heat Flux

HCCI operation, 1500 rpm
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Heat flux vs combustion phasing
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• Goal of Project: use optical diagnostic techniques to 
supply a knowledge base of in-cylinder processes 
under LTC operating conditions
– To understand reasons underlying observed emissions levels
– To gain insight into approaches to implement fuel or 

hardware changes that ameliorate the problems
– To help validate simulations of in-cylinder mixing and LTC

• Partnering with Chuck Mueller and Glen Martin at 
Sandia on the Caterpillar/Sandia 3171 optical engine

• Optical diagnostics techniques used include natural 
luminosity, liquid and vapor phase spray imaging, 
soot imaging, PLIF 

Optical Engine Testing with Sandia National Lab



Sandia Compression-ignition Optical Research 
Engine (SCORE)

Research engine 1-cyl. Cat 3176
Cycle 4-stroke CIDI
Valves per cylinder 4
Bore 125 mm
Stroke 140 mm
Intake valve open 32° BTDC exhaust
Intake valve close 153° BTDC compr.
Exhaust valve open 116° ATDC compr.
Exhaust valve close 11° ATDC exhaust
Conn. rod length 225 mm
Conn. rod offset None
Piston bowl diameter 90 mm
Piston bowl depth 16.4 mm
Squish height 1.5 mm
Swirl ratio 0.59
Displacement per cyl. 1.72 liters
Fuel Injector HEUI 450A
Injector tip Multi-hole nozzle



Camera View Orientation for 
Cycle Integrated Natural Luminosity (CINL) Movies 



CINL Movie of HCCI Combustion
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Fuel/Engine Systems Approach

OptimizedOptimized
SystemsSystems

Benefits For:
• Consumer
• Environment
• Industry

CAT ExxonMobil

Hardware Fuel

Engine Testing Advanced Characterization

Systems Integration Refining Process Technology

Combustion Modeling Chemical Kinetics

Fluid Dynamics Systems Modeling

CCC• CC•C

C*CC C2C*OC•CCOOH

C*CC• C2•C*OHOOCCCHO + OH•

CCC

“A” “B” “C” “D” “E”



Preliminary Fuel Effects Study

• Study parameters:
– Ignitability

• Cetane number: 39 - 55

• Octane number 
(R+M)/2: 63 - 91

– Aromatic content
• 28 - 45%

– Volatility
• Gasoline

• No.1 diesel fuel

• No.2 diesel fuel

• Other fuel parameters 
generally well matched 
when varying single 
property 
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Test Engine

• Single-cylinder Caterpillar 3401 engine
• Cylinder displacement: 2.44 liters
• Bore/Stroke: 137/165 mm
• Valves/cylinder: 4
• Swirl ratio: 0.4 
• Hydraulically intensified fuel injection 

system.  Multi-hole nozzle
• All emissions engine-out
• Main control variables: fuel injection 

timing, boost/backpressure
• Careful engine control to identify fuel 

effects



No Benefit for Increased Cetane in 
Expanding High Load Operability

• Increasing cetane #  produced undesirable advance in 
combustion phasing

• Cylinder pressure rise rate and increase in peak cylinder 
pressure result in lower load capability

• Similar behavior for natural and additized cetane
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Cetane Number Had Small Effect on Emissions
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Aromatics Has Small Impact on Emissions
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Increased Volatility Generally Reduces Emissions 
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Gasoline Can Also Achieve High HCCI Engine Loads 

• Reduced octane rating enabled operation 
over a broader speed/load range 

1200 rpm 1800 rpm 1200 rpm 1800 rpm 1200 rpm 1800 rpm

Maximum 
Load 

Achieved
70% 82% 75% 75%

Minimum 
Load 

Achieved
25% 25% 50% 50%

HCCI 
operation was 
only achieved 

at 71%.

HCCI 
operation was 
not achieved 
at any engine 

load

(R+M)/2 = 63.2 (R+M)/2 = 81.2 (R+M)/2 = 91.2



Numerous Challenges Remain For HCCI

• Cold start with lower compression ratios
• Air system development requirements
• Light load HC/CO cleanup
• Controlling combustion phasing and transient 

operation
• Cylinder to cylinder variability
• Structural reliability with higher cylinder 

pressure and rise rates
• Small hole production related issues
• Noise/vibration 



New DOE Program for Continued High Efficiency Clean 
Combustion Development

•Program coordination

•Test/Analysis

•Truck/Machine system 
integration and packaging

•Combustion

•Fuels effects

•Combustion 
Chemistry/modeling

•Optical diagnostics

•Fuel spray and
combustion

•Fuels effects

•Closed loop control

•Transient controls

•Vehicle calibration

•Sensors



Summary

• Significant progress made on expanding operating 
range for HD HCCI engine

• Full load HCCI is extremely challenging
• Fuels effects can have positive/negative impacts on 

performance and emissions
• Much work still needed to determine production 

feasibility of HCCI as a 2010 emissions strategy
• Advanced technology Diesel engines should continue to 

have long term viability as a prime power source for on 
and off-highway markets 
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