Development of a Durable Low-Temperature Urea-SCR Catalyst for CIDI Engines

by

Donovan Peña, Eric Coker, Ronald Sandoval, and James Miller

Sandia National Laboratories
Ceramic Processing & Inorganic Materials

Diesel Engine Emission Reduction Conference
Coronado, CA—Aug. 29 – Sep. 2 2004

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Diesel Emissions Control

Potential light duty configuration to meet Bin 5 emissions standards

Oxidation Catalyst
NO and HC

SCR Catalyst

Particulate filter

NH₃ Slip Catalyst

Urea

H₂NCONH₂

4 NH₃ + 4 NO + O₂ → 4 N₂ + 6 H₂O (medium)

4 NH₃ + 2 NO + 2 NO₂ → 4 N₂ + 6 H₂O (fast)

Take advantage of faster kinetics to increase conversion and expand temperature window
Catalyst Development Issues

- **High Selectivity**
 - $\text{NH}_3 + \text{NO}_x + \text{O}_2 \rightarrow \text{N}_2 + \text{H}_2\text{O}$
 - $\text{N}_2\text{O} + \text{H}_2\text{O}$

- **Urea Decomposition to NH$_3$**
 - $\text{NH}_2\text{-CO-NH}_2(\text{l}) \rightarrow \text{NH}_3 + \text{HNCO}$
 - $\text{HNCO} + \text{H}_2\text{O} \rightarrow \text{NH}_3(g) + \text{CO}_2$

- **Minimize Competing Reactions**
 - *Low T:* $2\text{NH}_3 + 2\text{NO}_2 \rightarrow \text{NH}_4\text{NO}_3 + \text{N}_2 + \text{H}_2\text{O}$
 - *High T:* $4\text{NH}_3 + 5\text{O}_2 \rightarrow 4\text{NO} + 6\text{H}_2\text{O}$
 - $4\text{NH}_3 + 4\text{NO} + 3\text{O}_2 \rightarrow 4\text{N}_2\text{O} + 6\text{H}_2\text{O}$
Typical Experimental Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>450-125</td>
</tr>
<tr>
<td>NO (ppm)</td>
<td>280-175</td>
</tr>
<tr>
<td>NO₂ (ppm)</td>
<td>70-175</td>
</tr>
<tr>
<td>NH₃ (ppm)</td>
<td>350</td>
</tr>
<tr>
<td>O₂ (%)</td>
<td>14</td>
</tr>
<tr>
<td>CO₂ (%)</td>
<td>5</td>
</tr>
<tr>
<td>H₂O (%)</td>
<td>4.6</td>
</tr>
<tr>
<td>GHSV (h⁻¹)</td>
<td>30,000-140,000</td>
</tr>
</tbody>
</table>

- NH₃:NOₓ in the feed is 1:1
- Powder catalysts diluted 1:1 with cordierite
- 450 – 125 °C decreasing, 30 minute isothermal holds
- NOₓ conversion (%) defined as:
 \[100 \times \left(1 - \frac{NO_{(out)} + NO₂_{(out)}}{NO_{(in)} + NO₂_{(in)}}\right) \]
- N₂O selectivity (%) defined as: \[\frac{N₂O}{(N₂O + N₂)} \]

20% NO₂ simulates cold-start conditions
LEP Staged Testing Protocol

Catalyst performance evaluated:
1. Fresh, using stated typical experimental conditions
2. Fresh, as a function of NO:NO\textsubscript{2} ratio
 • 100% NO to 100% NO\textsubscript{2}
3. After hydrothermal aging
 • 16 hours at typical experimental conditions at 600°C*, 700°C, and 800°C
4. After sulfur aging
 • 20 ppm SO\textsubscript{2} at 350°C* or 670°C at typical experimental conditions (minus NH\textsubscript{3}) for 24* and 48 hours

* Items in bold represent minimum performance requirement
Experimental Apparatus

MFCs

NH₃/N₂
NO₂/N₂
NO/N₂
HC
CO₂
N₂
Air
H₂O

Thermocouples

Powder
GHSV = 30,000-140,000 h⁻¹

Monolith
GHSV = 30,000 h⁻¹

Heating Tape

FTIR

GC
Hydrous Metal Oxide Synthesis

- **Hydroxide Addition**
 \[\text{Ti-alkoxide} + \text{Si-alkoxide} + \text{NaOH} \rightarrow \text{Methanol} \rightarrow \text{soluble intermediate} \]

- **Hydrolysis**
 \[\text{soluble intermediate} \rightarrow \text{Acetone} \rightarrow \text{Water} \rightarrow \text{NaTi}_2\text{O}_5\text{H} \downarrow \]

- **Acidification and Ion Exchange**
 \[\text{M}^{n+} + n \text{NaTi}_2\text{O}_5\text{H} \rightarrow \text{M(Ti}_2\text{O}_5\text{H)}_n + n \text{Na}^+ \]

- **Impregnation**
 \[\text{incipient wetness (powder)} \]

- **Activation/Pretreatment** (600°C in air for 4 h)

- **Monolith**
 \[\text{Catalyst} + \text{Al}_2\text{O}_3 + \text{H}_2\text{O} + \text{grinding} \rightarrow \text{slurry} \]
 \[\text{slurry} + \text{monolith} \rightarrow \text{final monolith} \]
 \[425^\circ\text{C in air for 4 h} \]
Effect of Synthesis Conditions on S.S.A.

- Less concentrated hydrolysis solution increases resulting surface area by 30%
- May be attributed to slower rate of hydrolysis from decreased metal concentration
- Similar results seen with supports only
- No linear relationship between catalytic activity and surface area
- All samples were calcined at 600°C in air and degassed at 400°C for 14 h
Comparison of Monolith and Powder Data

- Powders tested at high SV to simulate the contact time of 25 wt.-% catalyst on monolith.
- High-loaded monoliths (>16 wt.-%) approach powder performance.

Graph showing NOx Conversion vs. Temperature (°C) with data points for powder and monoliths at different loadings:
- Powder 1:1, 50% NO₂, 140,000 h⁻¹
- Monoliths, 50% NO₂, 30,000 h⁻¹
Optimization of Catalyst Composition

- Change concentration of same two components
- Have the ability to tune catalytic performance
 - tradeoffs in low and high temperature activity

<table>
<thead>
<tr>
<th>Powder</th>
<th>NOx Conversion</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>1165 / 1139/1-54C 2%CuO, 1%MnO</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1168 / 1139/3-13B 2%CuO, 2%MnO</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>1169 / 1139/3-13C 2%CuO, 4%MnO</td>
<td>200</td>
</tr>
<tr>
<td>20% NO2</td>
<td>140,000 h⁻¹</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450</td>
</tr>
</tbody>
</table>
Hydrothermal Treatment

V₂O₅-WO₃ Monolith Sample

- SV 30,000h⁻¹
- 50% NO₂

- Minor loss in activity after short term hydrothermal treatment
- More relative activity retained with D2
- Hydrothermal treatment at feed concentration (4.6% H₂O)

Catalyst D2 Powder Sample

- SV 30,000h⁻¹
- 50% NO₂
SO2 Tolerance

V$_2$O$_5$-WO$_3$ Monolith Sample

- SV 30,000h$^{-1}$
- 50% NO$_2$

Catalyst D2 Powder Sample

- SV 30,000h$^{-1}$
- 50% NO$_2$

- Fresh
- After 65 hrs. w/ 20 ppm SO$_2$

- Fresh
- Aged 24h, 20 ppm SO$_2$

• SO$_2$ Aging At 350 °C without NH$_3$

• Some loss in low temperature activity
Hydrocarbon Testing

- C₃ & n-C₈ suppress conversion ca. 10% above 300°C, (HC oxidation)
- No change on addition of 60 ppm toluene (>12 h TOS)
- Activity recovered when HCs removed

Graphs showing:
- V₂O₅-WO₃ Monolith Sample
 - SV 30,000 h⁻¹
 - 0% NO₂
 - NOₓ Conversion

- Catalyst D2 Monolith Sample
 - SV 30,000 h⁻¹
 - 20% NO₂
 - NOₓ Conversion

- Trends are important
- Not a direct comparison

- 117 ppm propylene
- 130 ppm n-octane
- 34 ppm propylene
- 38 ppm n-octane
Summary

• Optimizing synthesis parameters leads to enhanced catalyst surface areas
 – Nonlinear relationship between activity and surface area
• Catalyst development performed under a staged protocol
• Catalytic materials with desired properties have been identified
 – Meet stage requirements
 – Performance can be tuned by altering component concentrations
 – Optimization still necessary at low temperatures
 • Better activity and tolerance to SO2
 – V2O5-based materials ruled out because of durability issues
• Future work will focus on improving overall low temperature activity
Acknowledgments

The authors wish to thank the Low Emission Technologies Research and Development Partnership (Ford, General Motors, and DaimlerChrysler) and the U.S. Department of Energy for funding this work.