Factors Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry

John E. Dec
and
Magnus Sjöberg
Sandia National Laboratories

10th Diesel Engine Emissions Reduction Workshop
August 30 – September 1, 2004

Sponsor: U.S. DOE, Office of FeedomCAR & Vehicle Technologies
Program Manager: Gurpreet Singh
Introduction

- HCCI engines can provide diesel-like efficiencies and ultra-low NO\textsubscript{x} and PM emissions – However there are several technical barriers.

- Control of combustion phasing with changes in fueling rate is particularly important.
 - Various control techniques are available: intake heating, VCR, VVT.
 - Ultimately adjust the compressed-gas temperature (T\textsubscript{CG}) at “ignition.”

- Often considered that combustion phasing can be affected by F/A mixture ⇒ Ignition is faster with richer mixtures created by higher fueling rates or charge-mixture inhomogeneities.

- However, as the fuel load is varied, several factors are affected, each of which can affect combustion phasing.
 - Most factors directly or indirectly cause changes in the T\textsubscript{CG}.
 - Additionally, these factors can sometimes mask changes – or lack of changes – due directly to F/A-mixture effects.
Objectives

- Identify the factors that cause changes in combustion phasing with changes in fueling rate (fuel-air equivalence ratio, \(\phi \)).

- Systematically remove the changes due to each factor.
 - Understand the relative magnitude of these factors.

- Isolate the effect of changes in fuel chemistry with equivalence ratio to understand the importance of this factor.
 - Compare behavior of various fuel-types: iso-octane, gasoline, & PRF80.

- Investigate the potential of fuel stratification for controlling combustion phasing.
HCCI Engine and Subsystems

Fuel flow meter

Exhaust-Gas Analyzers
- CO
- CO₂
- O₂
- HC
- NOₓ
- Smoke/Soot

125 hp Dynamometer

Exhaust Plenum

Air Flow Meter

GDI Fuel Injector

On-Off Valves for Optional Premixed Fueling

Fuel Vaporizer

Auxiliary Heater

Sonic Nozzle for Metering Intake Air

Main Air Heater

Throttling Valve

Dehumidifier

Air Compressor

Port for PFI Injector

Over-Sized Flywheel

Centrally Mounted GDI Fuel Injector

Cylinder 6 Active HCCI Cylinder

Dual Butterfly Valve for Swirl Control

Cylinders 1-5 Deactivated

Cummins B
0.98 liter / cyl.

Piston design:
- CR: 17.6
- Swirl ratio: 0.9
- Speed: 1200 rpm
- \(P_{\text{in}} \): 100 kPa

Fueling: Premixed GDI

Base Condition
Observed Changes with Variation in Fueling

As fueling (ϕ) is varied, T_{CG} must be adjusted to maintain combustion phasing.

- 50%-burn phasing at TDC (indication of performance).
- Adjust T_{CG} by varying Intake temperature (T_{in}).

All fuels show a trend of a lower required T_{in} with increased ϕ.

- Do richer mixtures autoignite more easily for all fuels?
- What role do other factors play?

For example, wall heating and residuals will change with ϕ.

- Figure shows fuel-on transients for $\phi = 0.2$ and 0.3, iso-octane (avg. of 10 events).

SAE 2004-01-0557
Factors Causing Changes in T_{in} with Fueling

1. Combustion duration increases at lower ϕ. This requires that the start of combustion occur earlier to maintain 50% burn at TDC.

2. Wall temperatures increase with increased ϕ, causing higher T_{CG} for a given T_{in}.

3. Temperature of residuals increases with ϕ, reducing required T_{in}.

4. Heating/cooling during induction changes with ϕ as the ΔT between T_{in} and T_{wall} varies, amount of fuel vaporization, & “dynamic heating.”

5. Fuel-chemistry effects.
 – Differences in ϕ can affect the chemical-kinetic rates of autoignition.
 – Thermodynamic properties of mixture – particularly specific heat ($\gamma=c_p/c_v$).

- Systematically remove factors 1-4 leaving only fuel-chemistry effects.
1. Changes in Combustion Duration

- Burn duration increases as ϕ reduced.
 - Phasing remains very stable – Std. Dev < 0.3°CA for 10 & 50% burn over range of interest.
 - 0.1<ϕ<0.3 (idle to moderate load).

- Fuel-chemistry effects should correlate with ignition point.

- Select 10% burn as “ignition” pt.
 - Use Woschni correlation to account for heat transfer.

- Retake data with const. 10% burn at 357.4°CA, match ϕ=0.2.
 - Change in T_{in} with ϕ is greatly reduced, from 24°C to 8.5°C.

Base Fuel: Iso-Octane

- Changes in Combustion Duration

- Fuel-chemistry effects should correlate with ignition point.

- Select 10% burn as “ignition” pt.
 - Use Woschni correlation to account for heat transfer.

- Retake data with const. 10% burn at 357.4°CA, match ϕ=0.2.
 - Change in T_{in} with ϕ is greatly reduced, from 24°C to 8.5°C.
2 & 3. Remove Changes in T_{wall} and Residuals

- Remove changes in T_{wall} & residuals using alternate-firing technique.
 - Hold 10% burn phasing at 357.4°.

- Reverses trend – higher T_{in} with higher ϕ.

- Change in slope between the curves gives relative magnitude of factors.
 - $\phi < 0.2$, burn duration dominates.
 - Comb. eff. low: long burn, low heating.
 - $\phi > 0.2$, opposite is true.

- Separate T_{wall} & residual effects estimated from transient data and fire18/2 data.

SAE 2004-01-0557
4. Heating/Cooling During Induction

- $T_{in} \neq T_{BDC}$ due to heating/cooling during induction.
- Developed technique to estimate $T_{BDC} \Rightarrow$ Details in SAE 2004-01-1900.
- Compute changes in T_{BDC} from measured changes in mass flow relative to a base condition.

$$T_{in,\text{effective}} = T_{in,\text{effective,base}} \cdot \frac{m_{air,base}}{m_{air+fuel}} \cdot \frac{M_{air+fuel}}{M_{air}} \cdot \frac{P_{in}}{P_{in,base}}$$

- Base condition: motored $T_{in} = T_{\text{coolant}} = 100^\circ\text{C}$, minimizes heat transfer.
 - Dynamic heating $\Rightarrow T_{BDC,\text{base}} = 110^\circ\text{C}$ (from WAVE code, Ricardo).

- Estimate $T_{\text{residuals}} \approx \text{average of } T_{\text{exhaust}} \text{ and } T_{\text{blowdown}}$.

- Combine to get:
 $$T_{bdc} = \frac{T_{in,\text{effective}} \cdot m_{air+fuel} + T_{\text{residuals}} \cdot m_{\text{residuals}}}{m_{air+fuel} + m_{\text{residuals}}}$$

- A straightforward procedure. Technique is very sensitive.
4 & 5. Use T_{BDC} to Isolate Effects of Fuel Chemistry

- For fire19/1, residuals are constant; use effective T_{in} rather than T_{BDC}.

- Effective T_{in} curve shows only changes due to fuel-chemistry.
 - Autoignition kinetics & $\gamma = c_p/c_v$.

- Does a higher ϕ enhance autoignition for iso-octane?
 - Higher $\phi \Rightarrow$ smaller $\gamma \Rightarrow$ higher T_{in} required for same T_{CG}.

- Lesser slope of Effective T_{in} curve indicates an enhancement with ϕ.
 - Effect fairly small for iso-octane.
 - Much less than sum of other four factors.
 - Single-stage ignition fuel.
5. Fuel-Chemistry Effects – Various Fuels

- Alternatively, hold T_{in} constant and observe changes in phasing.
 - Trends similar to effective T_{in}.

- The 10%-phasing curves show isolated fuel-chemistry effects.

- Iso-octane: enhancement of ignition kinetics $<$ effect of γ.

- Gasoline: a little more enhancement of ignition kinetics with increased ϕ than iso-octane.

- PRF80: autoignition kinetics greatly enhanced with ϕ.
 - Correlates with increasing cool-flame chemistry with ϕ (infers diesel fuel).
 - At low ϕ cool-flame activity is minimal, and trend is similar to iso-octane.
50% Burn Phasing for Constant T_{in} and T_{wall}

- 50% burn is a better indicator of engine performance.

- Fire 19/1 data simulates behavior during a rapid load change before T_{in} and T_{wall} can respond.
 - Iso-octane & gasoline: small variation, little compensation required. ⇒ single-stage ignition
 - PRF80: large variation, significant compensation required. ⇒ dual-stage ignition (cool-flame chem.)

- Data can also be interpreted as indicating the potential for changing combustion phasing with mixture stratification (T_{wall} & residuals constant).
 - PRF80: mixture stratification has a strong potential to control phasing.
 - Iso-octane and gasoline: stratification offers little benefit for phasing control.
Stratification Advances Combustion for PRF-80

- **PRF80**: simulate load change from $\phi = 0.24 \Rightarrow 0.18$.
 - $\phi = 0.24$, $T_{in} = 59^\circ$C for 50% burn at TDC.
 - $\phi = 0.18$, $T_{in} = 102^\circ$C for 50% burn at TDC.

- Stratification can rapidly adjust phasing for PRF80.
 - Injection at 270°CA, in phase.
 - Also, improves combustion eff., as shown in SAE 2003-01-0752.

- **Iso-octane**: stratification does not advance phasing.
 - Weak enhancement of autoignition kinetics with ϕ.
 - Does not overcome charge cooling due to vaporization.

SAE 2004-01-0557
Summary and Conclusions

- In addition to fuel-chemistry, several factors affect the change in intake-temperature required to maintain constant 50%-burn phasing when the fueling rate is varied.

- The relative magnitude of these factors depends on the load range.
 - At low loads, ($\phi < 0.2$), changes in burn duration have the largest effect.
 - For higher loads ($\phi > 0.25$), changes in T_{wall} are dominant.

- The effect of residuals is relatively small in this engine.
 - They could be the dominant factor in a high-residual engine.

- The effect of F/A mixture (ϕ) on ig. timing depends strongly on fuel type.
 - Single-stage ignition fuels: iso-octane & gasoline \Rightarrow effect is small.
 - Dual-stage ignition fuels: PRF80 \Rightarrow effect is substantial due to cool-flame chemistry. (Similar effect expected for diesel fuel.)

- Mixture stratification can significantly and rapidly advance combustion phasing for PRF80 (or by inference diesel fuel), but not for iso-octane.