Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion

Lyle M. Pickett
and
Dennis L. Siebers
Sandia National Laboratories

Sponsors: DOE/OFCVT
Program Manager: Gurpreet Singh
Soot formation during typical diesel combustion:

\[I / I_0 = \exp(-KL) \]

Extinction Laser

Mixing-Controlled Combustion

Pressure-rise [MPa]

Optical thickness, KL

Time after start of injection [ms]

Distance from injector [mm]
NOx formation is high during mixing-controlled diesel combustion.
Is mixing-controlled diesel combustion with low emissions possible?

- Diesel operation with mixing-controlled combustion may be needed/desired:
 - Offers more control of heat release timing.
 - Typically used during high load operation.

Objective: Investigate soot processes at low flame temperature, mixing-controlled combustion conditions:
- Low oxygen concentration (EGR) and other low flame temperature operation.
- Identify non-sooting conditions that also have low flame temperature.
Research was conducted in a unique, optically-accessible combustion vessel.

- Ambient gas conditions:
 - 800 - 1300 K.
 - 7 - 60 kg/m³.
 - O₂ conc.: 10-21% (EGR).

- Common-rail fuel injector:
 - orifice tips from 50 - 180 µm.
 - D2 (#2 diesel fuel)
 - T70 (70%-TEOP, 30%-HMN) [21.5 wt% O]

- Measurements performed:
 - soot
 - lift-off length
A “no-soot” condition is obtained when the ambient gas temperature is decreased.

Conditions:
- ρ_a: 14.8 kg/m3
- ΔP: 138 MPa
- d: 100 µm
- Fuel: D2
- $O_2\%$: 21%

Time of PLII Laser Pulse
(During Mixing-Controlled Combustion)

Graph:
- AHRR vs. Time ASI [ms]
- SINL vs. Time ASI [ms]
- Axial distance [mm]

Images:
- PLII images at 1000 K, 900 K, and 850 K
- Lift-off at 850 K
The temperature at which soot does not form is much higher for a “micro-orifice”.

Conditions:
- ρ_a: 14.8 kg/m3
- ΔP: 138 MPa
- d: 50 µm
- Fuel: D2
- $O_2\%$: 21%

<table>
<thead>
<tr>
<th>T_a [K]</th>
<th>H [mm]</th>
<th>$\overline{\phi}(H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>7.4</td>
<td>4.2</td>
</tr>
<tr>
<td>1100</td>
<td>10.9</td>
<td>2.7</td>
</tr>
<tr>
<td>1000</td>
<td>18.1</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Mixing-controlled, non-sooting operating conditions:

\[\Delta P = 138 \text{ MPa}, \ 21\% \ \text{O}_2 \]
Mixing-controlled, low flame temperature strategies:

- Reduced ambient oxygen concentration (simulating EGR)
 - no soot formation
 - $\phi(H) \approx 2$
 - 10% O_2: $T_{ad} = 1940$ K

- Reduced ambient temperature
 - Creates a lean-burn steady flame
 - $\phi(H) \approx 0.6$
 - Avoids formation of a diffusion flame
 - $T_{ad} = 2040$ K

Conditions:
- ρ_a: 14.8 kg/m3
- T_a: 1000 K
- ΔP: 138 MPa
- d: 50 µm
- Fuel: D2

OH Chemiluminescence

- 21% O_2
- 15% O_2
- 10% O_2

Axial distance [mm]

- 21% O_2
- 15% O_2
- 10% O_2
Using an oxygenated fuel (T70), lean-burn combustion occurs with a larger orifice:

Conditions:
- T70 fuel
- time-averaged \(\text{OH}^* \)
- \(d = 100 \ \mu\text{m} \)
- \(\rho = 14.8 \ \text{kg/m}^3 \)
- \(\Delta P = 138 \ \text{MPa} \)
- \(\text{O}_2 \% = 21\% \)

Chemiluminescence is a factor of 3 weaker for fuel-lean combustion indicating lower flame temperature.
Combustion efficiency appears acceptable for a range of lean-burn conditions.

Conditions: T70 fuel, d = 100 µm, ρ = 14.8 kg/m³, ΔP = 138 MPa, 21% O₂

![Graph showing pressure rise normalized by fuel mass injected as a function of ambient gas temperature. The graph includes two data sets for different equivalence ratios, φ(H) = 0.7 and φ(H) = 0.5.]
Low-temperature, mixing-controlled phase operating conditions:

Conditions: D2 fuel, $\rho = 14.8 \text{ kg/m}^3$, $d = 50 \mu\text{m}$, $\Delta P = 138 \text{ MPa}$

- Soot formation avoided!
- Similar goals and behavior as low flame temperature, low soot production engine strategies.
 - Premixed HCCI
 - MK
 - Smokeless Rich
- However, heat release is closely related to mixing.
- Allows combustion during injection.
Presented results are for single jets--Could micro-orifices be used in an engine?

- In-cylinder air utilization difficulties.
- Large number of orifices are required.
 - Jet-to-jet interactions
 - Multi-injectors?
- Plugging?
- Manufacturing capabilities?
Summary and conclusions.

- IN SINGLE ISOLATED FUEL JETS, non-sooting, low flame temperature, mixing-controlled DI diesel combustion is possible.
 - Low ambient oxygen concentration (avoiding soot formation).
 - Lean-burn flames (avoiding high levels of NOx formation) using no EGR.
- Demonstrates limiting-case behavior of single jets.
- With substantial modification to engine hardware, micro-orifices and mixing-controlled diesel combustion MAY have the potential for:
 - Simultaneous engine-out PM and NOx reduction.
 - Higher load operation.
 - More control of heat release timing compared to HCCI.