Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies

Chuck Peden¹, S.E. Barlow¹, J.W. Hoard², J.-H. Kwak¹, M.L. Balmer-Millar¹,†, A.G. Panov¹,†, S.J. Schmieg³, J. Szanyi¹, and R.G. Tonkyn¹

¹Pacific Northwest National Laboratory, Richland, WA
²Ford Motor Company, Dearborn, MI
³General Motors R&D, Warren, MI

†Current address: Caterpillar, Inc., Peoria, IN

Funding – Department of Energy
EE/FreedomCar and Vehicle Technologies
Biological & Environmental Research – EMSL
Talk Outline

• Introduction
 • Plasma-facilitated catalysis for NOx reduction
 • Active catalysts
 • What is the plasma doing?

• Catalyst synthesis and reactivity
 • What is the optimum catalyst composition?
 • Some optimization of catalyst synthesis

• Studies of the reaction mechanism
 • Differences in rates of the back reaction (NO₂ to NO) on different catalysts
 • Concept of the Cascade Reactor
This Technology is Hydrocarbon SCR with a Plasma “Reformer”

Schematic of Two Step Discharge/Catalyst Reactor

Exhaust Gas: NO, HC’s, etc. → Discharge Volume → Catalyst Volume → N₂, N₂O, CO₂, etc. → To exhaust

Reformed Exhaust

Electrical Power

DEER Workshop, August 24-28, 2003
Modeling of the Gas-Phase Plasma Reaction Mechanisms

- Under lean-burn engine exhaust conditions, a non-thermal plasma is oxidative.
 - A primary reaction is conversion of NO -> NO₂
 - The oxidation of NO in a NTP is promoted by added hydrocarbon.
 - Added hydrocarbon is partially oxidized, and aldehydes are a crucial product as they are most reactive as reductant for NOx.
 - *Thermal* catalytic reaction of aldehydes + NO₂ yield activities of >90% for reasonable flow rates.
 - Understanding the products of exhaust ‘reforming’ by the plasma has guided catalyst development efforts.
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO(_x) removal, %</th>
<th>Temperature, °C</th>
<th>Space velocity, hr(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaTiO(_3)</td>
<td>No activity</td>
<td>180</td>
<td>12,000</td>
</tr>
<tr>
<td>Al(_2)O(_3) (active at higher temp.)</td>
<td>20</td>
<td>200</td>
<td>12,000</td>
</tr>
<tr>
<td>ZrO(_2)</td>
<td>No activity</td>
<td>180</td>
<td>12,000</td>
</tr>
<tr>
<td>HZSM-5, HBeta</td>
<td>No activity</td>
<td>180</td>
<td>12,000</td>
</tr>
<tr>
<td>CuZSM-5</td>
<td>15-20</td>
<td>180</td>
<td>12,000</td>
</tr>
<tr>
<td>CaY</td>
<td>54</td>
<td>200</td>
<td>12,000</td>
</tr>
<tr>
<td>NaY</td>
<td>60-65</td>
<td>180</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Subsequently, we have developed alkali- and alkaline earth-exchanged zeolite-Y catalysts for plasma-assisted NOx reduction.

Panov, et al., SAE 2001-01-3513
Talk Outline

• Introduction
 • Plasma-facilitated catalysis for NOx reduction
 • Active catalysts
 • What is the plasma doing?

• **Catalyst synthesis and reactivity**
 • What is the optimum catalyst composition?
 • Some optimization of catalyst synthesis

• Studies of the reaction mechanism
 • Differences in rates of the back reaction (NO₂ to NO) on different catalysts
 • Concept of the Cascade Reactor
What is the optimum cation substitution into Zeolite-Y?

Y-Zeolites are Crystalline Silica-Alumina Materials with 3-D Pore-Structures

- Cations compensate charged sites in zeolite present due to Al substitution.

\[
\text{Zeolite} \quad \overset{\text{Solution}}{\begin{array}{c}
\text{Na}^+ \\
\text{Ba}^{2+} + 2\text{NO}_3^- \\
\text{2Na}^+ + 2\text{NO}_3^- \\
\end{array}}
\]
Catalyst Synthesis by Ion Exchange

Ion exchange solution

Ex) 0.5 M solution of LiNO₃, KNO₃, CsNO₃ etc

2 ~ 4 times

Base zeolite

Ex) NaY(CBV100)

RT, >24 h

Stirring

DI water,
5 ~ 7 times

Filtering/Washing

100°C, air

Drying

Air, 500°C, 4 h

Calcination

(Me-Y, FAU)

(M = Li⁺, K⁺, Cs⁺ etc)
Experimental Procedure and Apparatus

Catalyst
Volume
Analysis

Simulated Exhaust

Discharge Volume

Catalyst Volume

Gas composition
(flow ~ 12,500 hr⁻¹)

- C₃H₆ – 525 ppm (C:N ~ 6)
- NO – 250 ppm
- Oxygen – 9%
- H₂O – 2%
- N₂ - balance

Reaction rates were measured at ‘steady-state’ to assure that NOx ‘reduction’ is not due to adsorption.

Plasma Power

- ~ 10 Joules/liter

Analysis

- Chemiluminescent NOx Analyzer
Comparison of Alkali- and Alkaline Earth-Exchanged Na-Y

- Alkaline earth-exchanged catalysts are generally more active than alkali metal-Y materials.
- Ba-Y is most active and has high activity over a wide-temperature range.
Alkali- and Alkaline Earth-Substituted Zeolite Y: Activity variation vs ionic radius

* TOF = # of NOx converted/supercage•sec • 100000
** Alkali and alkaline earth 2-2 base
Activity is a monotonic function of Ba substitution for Na

Activity of Ba$^{2+}$ and Na$^+$ sites is simply additive
Some optimization of catalyst synthesis:

The role of calcination and its effect on catalytic activity

Catalyst Synthesis by Ion Exchange

Ion exchange solution

- **Ex)** 0.5 M solution of LiNO$_3$, KNO$_3$, CsNO$_3$ etc.

Base zeolite

- **Ex)** NaY(CBV100)

Stirring

- RT, >24 h

Filtering/Washing

- DI water, 5 ~ 7 times

Drying

- 100°C, air

Calcination

- Air, 500°C, 4 h

Me-Y, FAU

(M = Li$^+$, K$^+$, Cs$^+$ etc)

DEER Workshop, August 24-28, 2003
Ba$_{2+}$ ion-exchange – no intermediate calcination

Aqueous ion exchange solutions contained an excess of Ba$^{+2}$.

A single solution ion exchange was sufficient to ‘saturate’ the zeolite with Ba.
• Again, the aqueous ion exchange solutions contained an excess of Ba$^{+2}$.

• Each solution ion exchange was followed by a calcination step.

• Solid state cation exchange?

Talk Outline

• Introduction
 • Plasma-facilitated catalysis for NOx reduction
 • Active catalysts
 • What is the plasma doing?

• Catalyst synthesis and reactivity
 • What is the optimum catalyst composition?
 • Some optimization of catalyst synthesis

• Studies of the reaction mechanism
 • Differences in rates of the back reaction (NO$_2$ to NO) on different catalysts
 • Concept of the Cascade Reactor
For mechanistic insight, compare NO$_2$ conversion rather than NO conversion.

NO \rightarrow NO$_2$ (in the plasma)
NO$_2$ \rightarrow N$_2$, N$_2$O, HCN, etc. (over the catalyst)
NO$_2$ \rightarrow NO (over the catalyst – different site?)

Tonkyn, Kwak, Szanyi, and Peden – in preparation
While virtually all NO$_2$ is reacted over alkaline earth zeolite-Y, a considerable fraction does not react over alkali-Y catalysts.

These differences suggest a significant difference in the reaction mechanism over these two classes of catalysts.
FTIR and TPD indicate much weaker adsorption of NO$_2$ on NaY relative to BaY

NO$_2$ TPD of NaY and BaY2-2
* Normalized based on the chemisorption amount

FTIR of NO$_2$ adsorbed on NaY and BaY2-2 during evacuation
NOx Conversion Chemistry

• **Fate of Nitrogen:**
 • NO \rightarrow NO$_2$ \rightarrow N$_2$ + N$_2$O + HCN + NO

• **Fate of Carbon:**
 • C$_3$H$_6$ \rightarrow CH$_2$O + CH$_3$CHO + CO + CO$_2$
 + CH$_3$OH + C$_3$H$_6$

• **After Treatment by Plasma and Catalyst:**
 • > 50% propene remains
 • NOx is mainly NO again
New Multi-Step, “Cascade” System Design Achieves 90% NOx Conversion Target with NaY Catalyst!!

- Patent filed, 9/01.
- Modeling has provided insight into optimum system design for obtaining maximum NOx reduction concurrent with minimum fuel economy penalty.

R.G. Tonkyn and S.E. Barlow, SAE 2001-01-3510
S.E. Barlow, et al., SAE 2001-01-3509

DEER Workshop, August 24-28, 2003
Summary and Conclusions

• Y-zeolites and alumina are very active for plasma-facilitated NOx reduction in different temperature ranges. NOx conversion levels of greater than 90% are achievable.

• The plasma reactor performs NO oxidation to NO$_2$ with chemistry that is coupled to partial hydrocarbon oxidation.

• Aldehydes, produced in the plasma, are excellent reductants for the *thermal catalytic* reduction of NOx over zeolite Y-based catalysts.

• Ba-Y catalysts are the most active with the widest temperature “window”. Improved catalyst synthesis procedures have been developed.

• Mechanistic studies point to some clear differences for the alkali- and alkaline earth-zeolite Y catalysts, especially with respect to the strength of NO$_2$ adsorption.
NOx emission control is a challenge in “lean-burn” engines

- Current “3-way” catalytic converters that use precious metal (Rh) for NOx reduction are ineffective for fuel-efficient ‘lean-burn’ engines.

New technologies for NOx reduction use oxides

- Ammonia (urea) selective catalytic reduction has been used for some time for “stationary” sources (e.g., power plants).
- NOx adsorbers based on barium oxides with “lean-rich” cycles.
- Reports of new zeolite oxide-based lean-NOx catalysts first appeared in 1990.
- Hybrid plasma-catalytic processes for NOx removal using alumina- and zeolite-based catalysts have been studied since the mid-1990’s.

• Reports in the literature claim many compounds for NOx reduction in conjunction with a plasma. Meaningful data is shown for only one of these compounds (Al₂O₃).
 – Co₂O₃, Fe₂O₃, CuO, Al₂O₃, TiO₂, ZrO₂, ZnO, Y₂O₃, MgO, Pt/SiO₂, SO₄/TiO₂, SO₄/ZrO₂, AlPO₄, NiSO₄/SiO₂, ZnCl₂/SiO₂, H-ZSM-5, H-Y, H-Mordenite, Na-ZSM-5, Cu-ZSM-5, BaTiO₃, SrTiO₃; perovskite, spinel, ilminite; Co, Cr, Cu, Ni, V, Pt/Al₂O₃, Pd/Al₂O₃Rh, Rh/ZnO₂, Fe₂O₃, Fe₃O₄; a ceramic, zeolite or perovskite with a coating of CuO or BaO, ZSM-5; oxides of V, Ti, W; and Pb or Ba niobate, titanate or zirconate.

• In general claims fall in several categories of materials: high dielectric constant materials, base metals, noble metals with known 3-way activity, zeolites with lean NOx reduction activity, and ammonia SCR catalysts.
Experimental Reactor

Tube Array Reactor (TAR)
Ion Exchange of Cations in Zeolites

Zeolite

\[
\text{Na}^+ \quad \text{Si} \quad \text{O} \quad \text{Al}^- \quad \text{Si} \quad \text{O} \quad \text{Si} \quad \text{O} \quad \text{Al}^- \quad \text{Si} \quad \text{O} \\
\text{O} \quad \text{O}
\]

Solution

\[
\text{Ba}^{2+} + 2\text{NO}_3^-
\]

\[
2\text{Na}^+ + 2\text{NO}_3^-
\]
Faujasite Zeolite Structure and Ion Exchange Sites

JPC B 103, 8283 (1999)
NaY batch effect – A Caution!

16% lower activity in second batch of Na-Y!

DEER Workshop, August 24-28, 2003
Is there ‘synergy’ between Na and Ba?

Ba exchange levels controlled by limiting Ba$^{+2}$ concentration in the ion exchange solution

Effect of varying $\text{Ba}^{2+}/\text{Na}^+$ ratio

* Sample label: based on solution concentration

![Graph showing NOx conversion (%)](image)

- NaY
- 25%Ba-NaY
- 44%Ba-NaY
- 59%Ba-NaY
- 62%Ba-NaY
- BaY2-2
- Ba-Y(1-1)
What is the plasma doing?

Panov, Tonkyn, Balmer, Peden, Malkin, and Hoard – SAE 2001-01-3513
• In the presence of unsaturated hydrocarbons, the primary reaction is oxidation of NO by the peroxo radicals leading to aldehyde production.

Plasma treatment of simulated exhaust

Other input gases included 2% H₂O and 8% O₂ with a N₂ balance.

<table>
<thead>
<tr>
<th>Plasma power</th>
<th>NO/NO₂, ppm</th>
<th>C₃H₆, ppm</th>
<th>CH₂O, ppm</th>
<th>CH₃CHO, ppm</th>
<th>CO/CO₂, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>210/5</td>
<td>660</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
</tr>
<tr>
<td>40 J/l</td>
<td>0/175</td>
<td>425</td>
<td>120</td>
<td>160</td>
<td>90/55</td>
</tr>
</tbody>
</table>
Role for Partially Oxidized Hydrocarbons

- Penetrante, et al., SAE 982508 – “For some catalysts, the partially oxygenated hydrocarbons [formed in a plasma reactor] are much more effective compared to the original hydrocarbons in reducing NOx to N₂.”

- Tonkyn, et al., SAE 2000-01-2896 – “NOx reduction over NaY is more efficient with one or more partially oxidized propylene products than with propylene itself.”

 - $\text{NO} + \text{Propylene} + \ldots \rightarrow \text{plasma-catalyst} \rightarrow \sim55\% \text{ NOx Conversion}$
 - $\text{NO}_2 + \text{Propylene} + \ldots \rightarrow \text{catalyst only} \rightarrow \sim25\% \text{ NOx Conversion}$
Fate of aldehydes over a zeolite catalyst

- Input Gas ($S/V \sim 12,000 \text{ hr}^{-1}$)
 - 200 ppm NO
 - 500 ppm C_3H_6
 - 7.5:1 C:N ratio
 - 2% H_2O
 - 8% O_2
 - 400 ppm CO
 - 7% CO_2
 - N_2 Balance
 - 15 J/L

<table>
<thead>
<tr>
<th></th>
<th>NOx conversion to N_2, %</th>
<th>CH_2O ppm</th>
<th>CH_3CHO ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>0</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>Plasma and NaY</td>
<td>50</td>
<td>55</td>
<td>15</td>
</tr>
</tbody>
</table>

Discharge Volume → **Catalyst Volume** → **Analysis**
Experimental Procedure and Apparatus

Gas composition (flow ~ 12,000 hr⁻¹)
- HC – varying type and amount
- NO – 200 ppm
- Oxygen – 8%
- H₂O – 2%
- N₂ - balance

Reaction rates were measured at ‘steady-state’ to assure that NOx ‘reduction’ is not due to adsorption.

Analysis
- CLA
- FTIR

Catalysts
- Ba-zeolite Y
NOx Reduction with Acetaldehyde versus Temperature (no plasma!)

Gas composition
- CH$_3$CHO – 500 ppm
- NO$_x$ – 200 ppm
- Oxygen – 8%
- H$_2$O – 2%
- N$_2$ – balance

Gas flow
- 12,000 hr$^{-1}$

Catalyst
- Ba-zeolite Y

C:N ratio ~ 5
Higher aldehydes equally active on a C1 basis

Gas composition
- NO₂ – 200 ppm
- Oxygen – 8%
- H₂O – 2%
- N₂ – balance

Gas flow
- 12,000 hr⁻¹

Temperature
- 240 °C

Catalyst
- Ba-zeolite Y

C:N ratio ~ 5
Plasma-catalysis activity and NO$_2$ TPD of alkaline-earth exchanged zeolites

Activity correlates with higher-T NO$_2$ TPD feature.
NOx emission control is a challenge in “lean-burn” engines

- Current “3-way” catalytic converters that use precious metal (Rh) for NOx reduction are ineffective for fuel-efficient ‘lean-burn’ engines.

New technologies for NOx reduction use oxides

- Oxides are being used as NOx adsorbers in another ‘lean-burn’ engine NOx control technology.
- Reports of new zeolite oxide-based lean-NOx catalysts first appeared in 1990.
 - Early on, it became quite evident that the mechanism for NOx reduction on oxides was considerably different that what had been established to occur on metal surfaces.

DEER Workshop, August 24-28, 2003
NOx reduction mechanism on oxide-based catalysts does not involve N-atom recombination.

For oxide-based NOx emission control, the nature of the active adsorbed NOx species is important but difficult to determine.
NO$_2^+$ CH$_3$CHO on Na-Y, FAU at 473K

a: t=0 (300K) e: t=15min. (473K) f: 5min. evacuation (300K)
Proposed Reaction Mechanism

\[
\text{ZeO}^{\cdots}\text{NO}^+\ \text{NO}_3^-\text{Na}^+ + \text{CH}_3\text{CHO} \rightarrow \text{ZeO}^{\cdots}\text{NO}^+\cdot\text{O=CHCH}_3\ \text{NO}_3^-\text{Na}^+
\]

\[
\{\text{O=N\cdotsO=CHCH}_3\}\text{Na}^+ \rightarrow \text{CH}_3\text{NO}_2 + \text{CO}_2 + \text{HONO} + \text{CH}_3\text{NO}
\]

\[
\text{HCNO} \rightarrow \text{HCN} \rightarrow \text{N}_2 + \text{CO}_2 + \text{H}_2\text{O}
\]

\[
\text{HNCO} \rightarrow \text{NH}_3 + \text{CO}_2 + \text{H}_2\text{O}
\]