SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005

Dr.-Ing. Wolfgang Frank
Dr.-Ing. Georg Hüthwohl
Dr. rer. nat. Bernd Maurer
Table of Contents:

- Introduction
- SCR Technology
 - Operation: Principles and Advantages
 - Aqueous Urea Solution (AdBlue) as the Reducing Agent
- SCR System Components
 - Overview
 - Requirements
- Methodology for meeting Required Standards
 - Component Testing
 - Vehicle Testing
- AdBlue (Urea Solution) Distribution Approach
- Summary and Outlook
Euro 4/5 Engine and Aftertreatment Technology Denoxation (SCR)
(Emissions: g/kWh, Test cycle ESC)

Starting Point
Euro 4, 5

Current EURO 3 Diesel Engine Technology (HD, 2L / cyl.)

Reduction ≥ 75 %
Reduction ≥ 65 %

Euro 4: Oct. 2004
Euro 5: Oct. 2008

0,00 0,05 0,10 0,15 PM
0,20

0 1 2 3 4 5 6 7 8 9 10 NOx

SCR
Getting Started: Urea based SCR-Systems for Commercial Vehicles

• The CEOs of the European truck manufacturers decided in September 2001 on UREA as the reductant for the implementation of SCR in Europe.

• Reasons:
 » SCR DeNOx Technology opens further fuel efficiency improvement
 » Experience of OEMs joint on-road testing since the 90’s
 » Urea is a non-hazardous product
 » Short time for implementation recommends well known technology
 » SCR catalyst production very likely to be extended to CV OEM demand
 » Commitment of European Urea producers for supply of Special Grade Urea

• The focus of the European engine manufacturers is a joint infrastructure for Urea which has the potential to be extended to light duty vehicles and passenger car applications for meeting future legislation

• The CV industry will coordinate their view with the mineral oil industry, logistic companies and other stakeholders in developing an efficient Urea infrastructure
Aqueous Urea Solution as Reductant

The European Trade name of aqueous Urea Solution for automotive application is

AdBlue

AdBlue is specified in the german standard

DIN 70070

It will be submitted to ISO standardization shortly
1. **NH₃** generation in exhaust pipe

\[
\text{Urea} \xrightarrow{> 200 \, ^\circ C} \text{NH}_3 + \text{HNCO}
\]

\[
\text{HNCO} + \text{H}_2\text{O} \rightarrow \text{NH}_3 + \text{CO}_2
\]

\[
\rightarrow 2 \text{NH}_3 + \text{CO}_2
\]

2. Reaction equations of **NOₓ** -Reduction

\[
\text{NO} + \text{NO}_2 + 2 \text{NH}_3 \rightarrow 2 \text{N}_2 + 3 \text{H}_2\text{O}
\]

\[
4 \text{NO} + \text{O}_2 + 4 \text{NH}_3 \rightarrow 4 \text{N}_2 + 6 \text{H}_2\text{O}
\]

\[
2 \text{NO}_2 + \text{O}_2 + 4 \text{NH}_3 \rightarrow 3 \text{N}_2 + 6 \text{H}_2\text{O}
\]
Key for SCR operation:
the Spray of Urea aerosol in the exhaust
→ definedly and reproducably metered for less than 0.1 seconds dwell time
PUREM SCR System

- Injection nozzle
- Dosing unit
- Air control unit
- Urea tank
- AdBlue supply Unit
- ECU
- SCR catalyst in muffler housing
- AdBlue tank
SCR System—Basic Components

• Urea Aerosol Injection:
 » Urea Supply Unit, Compressed Air Controller, Dosing Unit
 » Sensors
 » Nozzle
 » Electronic Control Unit

• Muffler Unit:
 » Catalytic Converter, Temperature Sensors
 » Housing optimized for
 – Mechanics, fixation to the vehicle frame
 – Flow Distribution
 – Acoustics
 – Material--Production technology

• Urea on board storage, preparation and flow
 » Urea tank
 » Urea pipes
 » Heating of tank and pipes
 » Level Sensor, Temperature Sensors
Key OEM Requirements to be met by the SCR System

» Durability:
 – 1,000,000 km (620,000 mi)
 – Truck setup Bad Road testing
 – Component Shaker Testing

» Temperature:
 – Components fixed to frame - 40 °C (-40 F) ... + 80 °C (+176 F)
 – Components fixed to engine max. 140 °C (285 F)

» Dosing precision:
 – +/- 5 weight %
 – Static and dynamic operation

» Catalytic efficiency for Euro 4:
 – >65% for 10,000 hr, equivalent 500,000 km (310,000 mi)
Key Requirement: Device Variability
Design suitable for multiple application
Key Requirement: Common Catalysts and Housing

- Straight through
- Vertically out
- Side out

Length1/Length2
Key Requirement: Meet Design Constraints of Exhaust System

Driving direction, left side view

Modification of Battery tray and Air tank placement provides the necessary space for the aftertreatment unit including Urea tank for Euro 4 and Euro 5 systems
Testing Methodology: SCR System on 3-axis Hydro Pulse test bench (cold)

Simulation by Bad Road Test Course Acceleration pattern
Catalyst Testing (reference and aging test)

- Aging with 1,000, 6,000 and 10,000 hours

Component Testing
Argillon based design
Winter Testing - JAN. 2003, Rovaniemi Finland, -34 °C (-29 F)
AdBlue Supply Unit mounted next to AdBlue Tank
Air Regulator and AdBlue Tank
AdBlue filling stations‘ arctic experience
Summer Testing - July 2003, Sierra Nevada, Spain

Altitude range: From Sea level to 2,100 m (6,890 ft)

Temperature: 42 °C (108 F) Sea Level, 32 °C (90 F) Mountainside
Urea Solution (AdBlue) Filling Station
Dosing Unit, Urea Solution Injection Nozzle

Dosing Unit

Urea Solution (AdBlue) Nozzle

Summer Testing
Testings Rationale and Outcome:

- Winter and Summer Tests provide Real-life Data as to the interaction of the SCR System and the vehicle: Climate, Air Flow turbulence, Dynamic/ Vibrational effects
- Basis for realistic, application specific test procedures
- Test bench provides weak spot detection and traceability in an accelerated timeframe
- SCR system design can be observed in detail and optimized as part of vehicle testing process
- This contributes to real life development and testing and thus to an accelerated time frame
2003 Western European Urea production locations

- Norsk Hydro Sluiskil, Netherlands
- Norsk Hydro Le Havre, France
- Grande Paroisse Oissel, France
- Fertiberia Huelva, Spain
- Fertiberia Puertollano, Spain
- Adubos Lavradio, Portugal
- DSM Agro Geleen, Netherlands
- Norsk Hydro Brunsbüttel, Germany
- SKW Piesteritz, Germany
- Agrolinz Linz, Austria
- Norsk Hydro Ferrara, Italy
- Norsk Hydro Terni, Italy
- BASF Ludwigshafen, Germany

4 European sites are now prepared for AdBlue production of up to 1,000,000 tons/year - equivalent to 300,000 HD SCR equipped trucks' annual demand.

Other production sites can be prepared for AdBlue production as the market develops.

Source: HYDRO
AdBlue Distribution in Europe

Univar, a large Chemical Distributor, has announced their proposed Distribution Plans. Univar provides Storage & Dispensing Units, European Wide Distribution Network, rational & Technical Support

Raiffeisen Cooperative, large distributor of Urea containing fertilizer liquids announced their proposed Distribution Concept. Agriculture Cooperatives provide Diesel fuel Filling stations with distribution to rural areas

German Mineral Oil Industry commissioned Scientific Association DGMK study (to be published in 09/03, Report #616-1). Decisions will be based on the findings of the report
Public AdBlue Filling Station

Stations in Germany

<table>
<thead>
<tr>
<th>Operator</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMV</td>
<td>Dingolfing/ Munich</td>
</tr>
<tr>
<td>Raiffeisen Cooperative</td>
<td>Münster</td>
</tr>
<tr>
<td>TotalFinaElf</td>
<td>Berlin (Oct. 2003)</td>
</tr>
<tr>
<td>TotalFinaElf</td>
<td>Stuttgart (Dec. 2003)</td>
</tr>
</tbody>
</table>
Summary and Outlook

• Euro 4 SCR requires Leading Edge Solution
• SCR is on schedule to be launched for 2005 Series
• Euro 4 SCR Technology provides the basis for achieving stringent future emission targets
• The introduction of additional sensors allows for further optimization
• Sensors to detect NH3, NOx, Urea are currently under development
• Major International Producers are committed to supplying Quality Grade Urea (AdBlue)
• AdBlue Distribution is a Reality in Europe