

Future Trends for DPF....SCR on-Filter (SCRF)

Micron-Scale Tunable Acicular Mullite

Malanga, M.T.*, Allen, M.P., Das, N.S., Kotnis, A., Mikulic, I., Vosejpka, P.C., Majkowski, S.F.

DEER Conference October 2012 - Detroit, Michigan

Integrating Filtration and De-NOx Functions

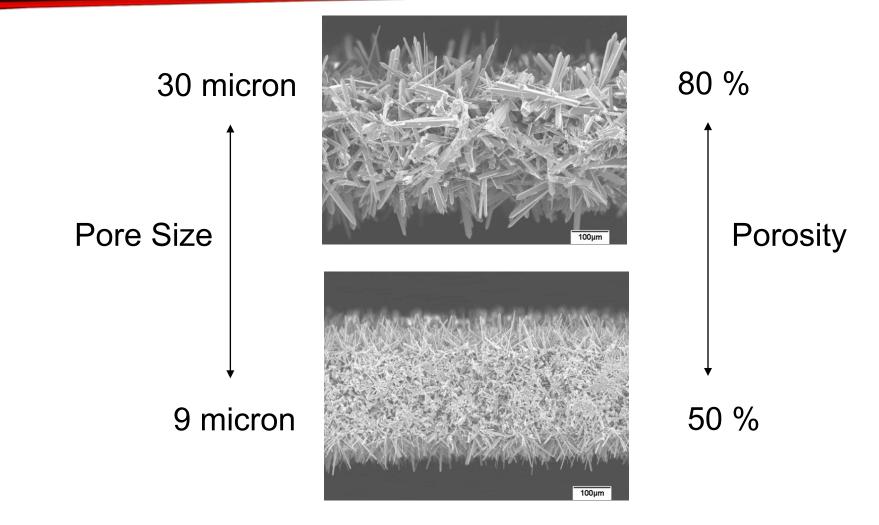
- The promise of multifunctional DPFs (SCRFs):
 - Reduced volume and weight
 - Reduced system cost
 - Reduced system pressure drop
 - Higher working temperatures for catalytic activity
- Key limitation to practical implementation:
 - Excessive filter pressure drop at the high catalyst loads required to meet the DeNOx requirements
- Substrate and catalyst innovations are needed:

<u>Substrate</u>

- High porosity DPF substrates
- Optimized pore structures
- High catalyst / Low PD
- Excellent filtration behavior
- Robust and durable

Catalyst

- Tailored SCR catalysts
- Porosity and particle size


Dow

- Coating distribution
- Catalytic performance
- Robust and durable

Tailored Substrates for SCRF Applications

Automotive Systems

Dow

- Dow's ACM process enables tuning of pore size & porosity
- Substrate can be tuned for specific applications, e.g. SCRF
- Opportunity to develop substrate catalyst synergies

Dow

- Many emerging applications offer potential for porous ceramic substrates
- Multifunctionality is an emerging opportunity for advanced ceramics
- Integrating functions will require tunability of microstructures
- Dow's acicular mullite ceramics are easily tailored for SCRF
 - In-process porosity & pore size control
 - High porosity, high strength substrates
 - High catalyst loading with low pressure drop
 - High regeneration efficiency
 - Excellent NOx reduction performance
- New mullite-cordierite composite materials are under development
 - Capture advantages of both parent materials
 - Potential next generation of high porosity SCRF products