Development of a Dynamic DOE Calibration Model

Travis A. Anderson, Jason W. Reed, Dr. Michael L. Traver
IAV Automotive Engineering, Inc., Northville, MI

Dr. Michael Hegmann, Dr. Wolf Baumann, Dr. Karsten Röpke
IAV GmbH, Berlin, Germany

Eduardo B. Nigro, James R. Cigler
Navistar, Inc., Melrose Park, IL

Poster P-22
Project Overview

Objectives

- Develop a dynamic model of a heavy duty diesel engine
- Determine hardware capability over the FTP cycle
- Optimize engine calibration in terms of cycle emissions and performance

Dynamic DOE Process

- Identify model inputs and outputs
- Identify input boundaries and excitation frequency ranges
- Generate and execute dynamic (chirp) test cycles for emissions model training and validation
- Generate and execute step DOE test cycles for temperature model training and test cell characterization
- Train and validate dynamic models
- Apply models for system optimization

Results

- Dynamic emissions models have been developed (validation error on the order of 5-10%)
- Moving forward with calibration optimization on FTP