## Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations



Zhiming Gao<sup>1</sup>
Stuart Daw<sup>1</sup>
Josh Pihl<sup>1</sup>
Maruthi Devarakonda<sup>2</sup>

<sup>1</sup>Oak Ridge National Lab <sup>2</sup>Pacific Northwest National Lab

2011 DOE-DEER Conference Oct. 3rd, 2011

Sponsor: Lee Slezak Vehicle Technologies Program U.S. Department of Energy



Poster – P5



## We simulated the performance of a diesel PHEV equipped with DOC/SCR

- The SCR catalyst studied here is predicted to achieve 76%-85%NOx reduction for the hypothetical baseline PHEV case
- The DOC reduces CO/HC emissions and improves SCR function by converting NO to NO<sub>2</sub>, but slows **SCR** thermal response
- Thermal insulation can reduce SCR sensitivity to cold-start events and improve NOx and NH3 slip control



National Laboratory

Pacific Northwest NATIONAL LABORATORY

## **Simulations** ORNL Transient Engine Model Vehicle Aftertreatm DOC/SCR: NOx/HC/CO reduction

## **SCR Experimental Protocol**





Aftertreamtent device modeling

**Engine map includes:** 

 Fuel consumption ❖ E/O temperature

♦ E/O NOx, HC, CO, PM

Poster - P5