Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations

Zhiming Gao¹
Stuart Daw¹
Josh Pihl¹
Maruthi Devarakonda²

¹Oak Ridge National Lab
²Pacific Northwest National Lab

2011 DOE-DEER Conference
Oct. 3rd, 2011

Sponsor: Lee Slezak
Vehicle Technologies Program
U.S. Department of Energy
We simulated the performance of a diesel PHEV equipped with DOC/SCR

- The SCR catalyst studied here is predicted to achieve 76%-85% NOx reduction for the hypothetical baseline PHEV case
- The DOC reduces CO/HC emissions and improves SCR function by converting NO to NO₂, but slows SCR thermal response
- Thermal insulation can reduce SCR sensitivity to cold-start events and improve NOx and NH₃ slip control

SCR Experimental Protocol

\[4NH_3 + 4NO + O_2 \Rightarrow 4N_2 + 6H_2O \]
\[2NH_3 + NO + NO_2 \Rightarrow 2N_2 + 3H_2O \]
\[4NH_3 + 3NO_2 \Rightarrow 3.5N_2 + 6H_2O \]