Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel

Poster Location P-04

By: Adam B. Dempsey & Professor Rolf D. Reitz

University of Wisconsin – Madison, USA
Engine Research Center
Directions in Engine-Efficiency and Emissions Research

- Ethanol has potential to reduce CO$_2$ and dependence on foreign oil.
- The majority of the energy input to produce ethanol is spent in water removal (distillation & dehydration), which is extremely non-linear.
- Dual Fuel Reactivity Controlled Compression Ignition (RCCI) shows promise as an avenue to utilize hydrated ethanol as a fuel, where conventional combustion regimes could not.

75% by Volume Ethanol & Diesel RCCI Combustion

[Graphs showing combustion pressure, indicated efficiency, and NOx emissions.]