

Adaptable Nanotechnology for Cleaner, Energy-Efficient Products

Multi-physics modeling of thermoelectric generators for waste heat recovery applications

Yanliang Zhang, Jonathan D'Angelo, Xiaowei Wang, and Jian Yang

BOSTON COLLEGE

Dearborn, Michigan

GMZ TE LEADERSHIP: Across all Markets

ZT Roadmap: Achieving 2.0

Powerful Technology

- Independent of material family
- Covers all applications & markets
- Sustaining performance advantage

*it is possible to acquire specialty non-commercial material with ZT~1 for 5x cost.

DOE Program Overview

- Proposed two-stage TEG system with half-heusler as the first stage, and Bi₂Te₃ as the low temperature stage. Thermal buses and high thermal conductivity spacers, together with thermal insulation are used to concentrate heat to low-profile generators, significantly reducing the amount of materials used for the TEGs.
- 5% fuel efficiency improvement with TE generator integrated and tested in vehicle platform under US06 drive cycle
- (a) Chevrolet HHR vehicle, (b) exhaust system, (c) a prototype built at Bosch, (d) and (e) illustration of the two-stage cascade design

Hot exhaust flow

CFD simulation of heat exchanger

Heat exchanger is the lead component, dictating heat flow in TEG

CFD simulation of exhaust flow through heat exchanger

- Pin-fin HEX has higher heat transfer performances due to enhanced surface area and flow turbulence;
- Plate-fin has less pressure drop at the same heat transfer performances.

Temperature drop on TE module across the flow

Temperature uniformity can be improved by optimizing fin distributions.

	TEG-in	TEG-out	ΔT	Heat flow	Pressure drop
	(°C)	(°C)	(°C)	(W)	(Pa)
Regular fin	425	280	145	1226	306
Optimized fin	355	335	20	1160	300

- The optimized fin design reduces TEG temperature drop from 145 °C to 20 °C;
- The temperature uniformity improves system performances and reduces system integration cost.

Thermoelectric modeling using FEM

Temperature distribution in TEG system

Electric voltage in TEG system

Detailed thermoelectric system design can be completed using FEM method in Ansys.

Electric power output

Based on GMZ Half Heusler materials, power density ~0.8 W/cm² can be achieved.

TEG system performance

Structural thermal modeling- thermal stress and reliability

Thermal stress near the contacts of TE legs is critical to system reliability

Thermal stress and material CTE

It is critical to minimize thermal stress by choosing CTE closely matched materials

Simplified 1-D TEG system model

- Thermal and thermoelectric transport considered in the 1-D model;
- Quick optimization of key design parameters.

Optimization of TEG system using 1D model

• TE packing fraction should be optimized to achieve peak power density

- A comprehensive 3-D model has been developed to design TEG system towards maximum performances, reliability, and minimum cost;
- With the knowledge base developed in 3-D modeling, a 1-D model was developed for quick system optimization.

Adaptable Nanotechnology for Cleaner, Energy-Efficient Products

Acknoledgements U.S. Department of Energy DE-EE0004840 John Fairbanks, Carl Maronde

BOSTON COLLEGE

DEER 2012

Dearborn, Michigan

October 18th, 2012