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GMZ TE LEADERSHIP: Across all Markets
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DOE Program Overview
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= Proposed two-stage TEG system with half-heusler as the first stage, and Bi,Te; as the low temperature
stage. Thermal buses and high thermal conductivity spacers, together with thermal insulation are used
to concentrate heat to low-profile generators, significantly reducing the amount of materials used for the
TEGs.

= 5% fuel efficiency improvement with TE generator integrated and tested in vehicle platform under US06
drive cycle

= (a) Chevrolet HHR vehicle, (b) exhaust system, (c) a prototype built at Bosch, (d) and (e) illustration of
the two-stage cascade design
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An overview of TEG system
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CFD simulation of heat exchanger

 Fin material selection
* Fin geometry and size
* Fin packing fraction

* Fin arrangement

» Heat transfer performance

* Pressure drop

CFD simulation of exhaust flow through heat exchanger
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* Pin-fin HEX has higher heat transfer performances due to enhanced surface
area and flow turbulence;

* Plate-fin has less pressure drop at the same heat transfer performances.
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Optimized fin distribution

Cold plate

Temperature uniformity can be improved by optimizing fin distributions.

(GMZ

©2012 GMZ Energy, Proprietary and Confidential



Comparison between regular and gradient

heat exchangers

TEG-in|TEG-out| AT | Heat flow | Pressure drop
(°C) | (°C) [(°C) (W) (Pa)
Regular fin 425 280 145 1226 306
Optimized fin | 355 335 20 1160 300

* The optimized fin design reduces TEG temperature drop from 145°C to
20°C;

» The temperature uniformity improves system performances and reduces
system integration cost.
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Thermoelectric modeling using FEM
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Temperature distribution in TEG system Electric voltage in TEG system

Detailed thermoelectric system design can be completed using FEM method in Ansys.
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Electric power output
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Based on GMZ Half Heusler materials, power density ~0.8 W/cm? can be achieved.
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TEG system performance

500 — 1400
450 | 1 1200
S 400 | 11000
B350 , {800 &
E 300 | 1600 %
g o
2 250 L {400
200 | {200

150

1 1 1 1 1 0
0 005 01 015 02 025 03

HEX fin packing fraction
(cmz

*Exhaust temperature: 600 °C
*Mass flow rate: 30 g/s

*Electric power output: ~ 400 W
*Pressure drop: ~1 KPa
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Structural thermal modeling- thermal stress

and reliability
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Thermal stress near the contacts of TE legs is critical to system reliability
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Thermal stress and material CTE
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It is critical to minimize thermal stress by choosing CTE closely matched materials
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Simplified 1-D TEG system model
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e Thermal and thermoelectric transport considered in the 1-D model;
 Quick optimization of key design parameters.
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Optimization of TEG system using 1D model
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» TE packing fraction should be optimized to achieve peak power density
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Conclusions

= A comprehensive 3-D model has been developed to design TEG system
towards maximum performances, reliability, and minimum cost;

= With the knowledge base developed in 3-D modeling, a 1-D model was
developed for quick system optimization.
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