Enabling the Next Generation of High Efficiency Engines

Opportunities and challenges of new technologies and an ever expanding parameter space

Robert M. Wagner

Fuels, Engines, and Emissions Research Center Oak Ridge National Laboratory

Meeting new U.S. fuel economy standards and CO₂ regulations will require significant *production viable* advances in technology

* Spread is due to range in standards for small/large passenger and light-duty truck

Must also simultaneously meet evolving emissions standards

- CO₂ and criteria emissions standards vary around the world but all becoming increasingly aggressive
- New technology approaches to meet CO₂/efficiency regulations may have unintended emissions consequences
 - Higher efficiency engines have lower exhaust temperatures which will be a major challenge for aftertreatment systems
 - Gasoline-based particulate matter now a concern with gasoline direct-injection systems
 - Must be aware of potential "new" exhaust species (from combustion or emissions controls) in sufficient concentrations to be a new health issue
- Requires systems approach to maximize efficiency with lowest possible emissions and minimum cost

Major challenge is the implementation of fundamental innovations with minimal loss in translation

Fundamental combustion <u>Metric:</u> Indicated efficiency

- Pressure work only
- Simulated boundaries

Engine-system <u>Metric:</u> Brake (shaft) efficiency

- Hardware limitations
- Parasitic losses
- Friction
- Engine-system controls
- Cylinder imbalances
- Aftertreatment integration

Full vehicle <u>Metric:</u> Drive cycle efficiency

- Drive system
- Fuel mix
- Drive cycle mismatch
- Vehicle system management

Many high efficiency engine concepts historically limited by the state of technology

Direct Injection Spark Ignition

 Scussel, Simko, and Wade, "The Ford PROCO Engine Update", SAE Technical Paper 780699, **1978**.

Low Temperature Combustion

- Najt and Foster, "Compression-Ignited Homogeneous Charge Combustion", SAE Technical Paper 830264, **1983**.
- Akihama, Takatori, and Inaga, "Mechanism of the smokeless rich diesel combustion by reducing temperature", SAE Technical Paper 2001-01-0655, 2001.

Dual-fuel Combustion

- Stanglmaier, Ryan, and Souder, "HCCI Operation of a Dual-Fuel Natural Gas Engine for Improved Fuel Efficiency and Ultra-Low NOx Emissions at Low to Moderate Engine Loads", SAE Technical Paper 2001-01-1897, 2001.
- Singh, Kong, Reitz, Krishnan, Midkiff, "Modeling and Experiments of Dual-Fuel Engine Combustion and Emissions", SAE Technical Paper 2004-01-0092, 2004.

Early SI Direct Injection Ford 302 CI PROCO engine

Low Temperature Combustion

 ϕ -T space shows regions of high soot and NOx production (Akihama et al., SAE 2001-01-0655)

Technology advances leading to a paradigm shift in engine management

Component development

- Robust and fast response turbomachinery
- Flexible intake and/or exhaust valve systems
- Variable compression ratio
- Flexible fast-acting fuel injection systems
- High pressure direct-injection fuel systems
- Advanced ignition technologies
- Sensor development
 - High-speed pressure and temperature
 - Onboard emissions diagnostics

• ECU development

- New, faster architectures
- Combustion feedback
- Ability to solve complex problems on-the-fly

Advances in component technologies allow for more complete control of engine boundary conditions and the combustion process

Advances in sensors and on-board computing allow for more active control for pushing the boundaries of high efficiency operation

TAKEAWAY: Unprecedented opportunities in combustion strategy and controls

Options no longer limited to conventional SI and CI combustion

Regardless of approach – end game objective is to maximize efficiency with lowest possible emissions

Need to manage the combustion process to avoid soot and NOx formation ...

...while at the same time avoid CO and UHC emissions

Example: Reactivity Controlled Compression Ignition (RCCI) combustion

- In-cylinder fuel blending enables improved control of premixed combustion event
 - Two fuels with different reactivity (e.g., gasoline and diesel) to form in-cylinder reactivity gradients
- Benefits
 - Diesel-like or higher brake thermal efficiency
 - Low NOx and particulate emissions (less aftertreatment requirements)
- Multi-cylinder engine challenges
 - Two fuel systems with precise control
 - High dilution (for some conditions)
 - Precise control of intake conditions
 - Combustion feedback control

<u>Figure Source:</u> Sandia National Laboratories, "Optical Engine Research Rapidly Reveals How High-Efficiency RCCI Combustion Controls Burning Rates", U.S. DRIVE Highlights of Technical Accomplishments 2011.

For more information:

- Curran et al., ORNL, "Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine", accepted for publication *International Journal of Engine Research*, 2012.
- Curran et al., ORNL, "In-cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Engine", Society of Automotive Engineers, Paper 2010-01-2206.

New control opportunities: Previous observations of structure in cyclic dispersion once thought of as academic curiosities

Lean Combustion Limit

- Kantor, "A dynamical instability of spark-ignited engines", Science 15 June 1984: Vol. 224 no. 4654 pp. 1233-1235.
- Daily, "Cycle-to-cycle variations: A chaotic process?",
 Combustion Science and Technology, **1988**, Vol. 57, pp 149-162.
- Wagner, Drallmeier, and Daw, "Nonlinear Cycle Dynamics in Lean Spark Ignition Combustion", Twenty-Seventh International Symposium on Combustion, The Combustion Institute, **1998**.

HCCI Instabilities

 Wagner, Edwards, Daw, Green, and Bunting, "On the nature of cyclic dispersion in spark assisted HCCI combustion", SAE 2006-01-0418, 2006.

Simulation example of cycle-to-cycle variations for lean-burn SI combustion

Repeating patterns observed near the stability limit of spark assisted HCCI combustion

Opportunity is through the prediction and control for the forced stabilization of inherently unstable systems

- Stability potential roadblock to many advanced combustion implementations
- Current approach is distance from the edge of stability to avoid unintended excursions
- Driven by stochastic (in-cylinder variations) and deterministic (cycle-to-cycle coupling) processes
- Further complicated by cylinder imbalances

TAKEAWAY: Dynamic instabilities are short-term predictable and conducive to control

Understanding of instability mechanisms coupled with advances in sensors and ECUs will enable unprecedented control opportunities

- Avoid unintended excursions which may damage or destroy engine and aftertreatment systems
- Example showing the "edge of stability" for lean burn SI combustion

Transition and stabilization of LTC modes

- Multi-mode operation may require transition between combustion modes
- Operation under inherently unstable conditions may provide benefits
- <u>Example</u> of complex but short-term predictable patterns in spark assisted HCCI combustion

Avoiding abnormal combustion events

- Pre-ignition potential roadblock to extreme down-sizing
- Advanced time-series methods used for prediction and avoidance
- <u>Example</u> phase-space reconstruction which is one method that has potential for prediction and avoidance of abnormal combustion events

Parameter space is growing rapidly and expected to continue to grow

Challenge

- Conventional design methods may not be possible for optimal solution
- Massive calibration space is difficult to manage

• Opportunity

- Enable new high efficiency combustion strategies for real-world applications
- Improved fuel flexibility ability to make use of a more diverse fuel supply?

TAKEAWAY: On path to fully own the engine for new levels of optimization

Full Factorial Calibration Space (for 10 level variation in each parameter)

Source: Adapted from Atkinson et al., DEER 2011.

Better simulation is critical to engine design and calibration optimization

- Three levels of simulation with different purposes
 - Predictive combustion: combustion optimization and methods development
 - Full engine simulation: engine system optimization and model-based controls
 - Full vehicle simulation: technology interactions, component optimization and supervisory controls
- Each scale requires different level of fidelity
 - High fidelity combustion on vehicle scales computationally impossible (at the moment)
- Exponential increase in parameter space translates to exponential increase in simulation space and computational requirements

TAKEAWAY: Need for faster simulation, faster optimization methods, and reduced models for on-board controls

Leadership High Performance Computing* (HPC) has potential to accelerate design and development at an unprecedented scale

- ORNL applying unique combination of engine and catalysis expertise with world-class HPC expertise to address design and engineering challenges
- Example ORNL projects in progress with industry
 - Large Infrastructure computing for Multi-cycle Instability and Transient Simulations" (LIMITS)
 - Addresses limits of fuel economy benefit of dilute combustion
 - Focus on stochastic and deterministic processes that drive cycleto-cycle instabilities
 - Major challenge is scaling serial problem (cycle-to-cycle variations) to parallel architecture
 - Injector design optimization

15

 Improve understanding and design optimization of fuel injector hole patterns for improved engine efficiency and reduced emissions

<u>Figure reference:</u> Neroorkar, Mitcham, Plazas, Grover, Schmidt, "Simulations and Analysis of Fuel Flow in an Injector Including Transient Needle Effects", ILASS-Americas 24th Annual Conference on Liquid Atomization and Spray Systems, San Antonio, TX, May 2012.

*Leadership HPC: DOE provides a portfolio of national high-performance computing facilities housing some of the world's most advanced supercomputers.

Heat Release (i)

HPC speeds will increase 1000x over the next decade

ORNL Leadership Computing Roadmap

- Leadership technology of today provides foundation for desktop computers and small clusters of tomorrow
- Interesting factoids:
 - Current laptop technology would have ranked in top 500 supercomputers of the late 1990s
 - System at bottom of current top 500 list equivalent to aggregate of all machines on 1999 list
 - An iPad 2 would have made the early lists of the top 500 machines in the world

*PF = Petaflop = 1 quadrillion floating point operations/second; EF = Exaflop = 1 quintillion floating point operations/second **OLCF = Oak Ridge Leadership Computing Facility

HPC challenges and opportunities going forward

- Improved large scale modeling and simulation is critical to addressing evolving science and engineering problems to make the most of advances in engine and catalyst technologies
- Resources becoming more readily available
 - HPC technology continues developing at fast pace
 - Multi-core systems now readily available and affordable
 - New hybrid architectures are combining traditional CPUs with GPUs to deliver new capabilities
- Major challenge is many simulation codes not ready for large scale parallel and/or hybrid architectures
- Large scale simulation critical to understanding and developing reduced models for small clusters and eventually onboard computers

Jaguar, a Cray XK6 supercomputer housed at ORNL is a DOE flagship supercomputer and one of the fastest in the world for unclassified research

Takeaways

- Engines are undergoing a paradigm shift in flexibility
- New control opportunities will push the boundaries of high efficiency operation
- New approaches to calibration will be necessary for optimization of the next generation of engines
- Predictive simulation is essential for optimal design and controls
- HPC is available and should be considered when developing new models and simulation codes

Acknowledgements

Gurpreet Singh, Ken Howden, and Kevin Stork of the **United States Department of Energy Vehicle Technologies Program** for funding a significant portion of the research in this presentation

Suzy Tichenor and Sreekanth Pannala of ORNL for expertise and guidance related to the **Oak Ridge Leadership Computing Facility**

