DEER Conference 2012 10/17/2012

Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications

Mojghan Naseri, Daniel Kucheruck, Hai-Ying Chen, Sougato Chatterjee

JM 🕸

Outlines

- > Introduction
- Objectives
- > Experimental
- > Results
 - > NOx Conversion
 - > Backpressure
 - > Passive Regeneration
- > Summary

Introduction

- ➤ Most 2010 heavy duty systems include:
 - > DOC + CSF + SCRs + ASC
 - > NO_x reduction with emission control has been introduced
- ➤ With proposed future regulations for GHG control and more emphasis on improved fuel economy, future engines will be designed with higher engine out NO_x
- ➤ Therefore, these future engines will require emission control systems with much higher NO_x conversion capability
- ➤ Additional NO_x control across the DPF is being considered as one means of improving overall system NO_x reduction capability

Objectives

- ➤ Evaluate SCR coated DPFs in US 2010 configuration to understand NO_x conversion capabilities of such systems
 - > Test under Steady state
 - > Test under Transient cycles
- ➤ Determine how SCR-DPF system can support higher NO_x reduction for higher engine out NO_x
- ➤ Evaluate how filter regeneration is affected by introducing SCR coating on the DPF

Experimental - Systems for Testing

Experimental Procedure

- Engine: 6 Cylinder US 07 engine
 - EGR off, NOx= 4-5 g
- Units:

DOC: Degreened, aged at 700°C for 100hrs with 10% water SCR-DPF/SCR: Aged at 650°C for 100hrs with 10% water

- Steady State:
 - Temp from 200°C to 440°C, ANR=1.2
- FTP Runs
 - Cold FTP
 - Hot FTP
 - ANR ~ 1.3

NOx Conversion

SCR-DPF Provides Significant NOx Conversion Advantages Equivalent system volume

SCR-DPF Provides NOx Conversion Advantages at Low temperature

Equivalent system volume, ANR=1.2

SCR-DPF Optimization

Optimization include; high NO2, improved SCR-DPF coating, improved SCR formulation

SCR-DPF Optimization

Optimization include; high NO2, improved SCR-DPF coating, improved SCR formulation

Optimized SCR-DPF system can provide high NOx conversion even with single SCR substrate

Backpressure

SCR-DPF Backpressure Improvement

Optimized coating helped to reduce backpressure while maintaining NOx conversion

Passive Regeneration

Test Protocol

- ➤ SCR-DPF loaded up to 3g/l of soot
- ➤ Speed A and DOC inlet temperature 400°C was chosen to evaluate passive regeneration. Filters were regenerated for 30 min.
- > Passive Regeneration during FTP cycle with urea injection (30hrs)
- > Following regeneration, filters were weighed while still hot at around 180°C
- SCR-DPF was regenerated with EGR off
- SCR-DPF passive regeneration capability was studied with urea injection (ANR=1.0)

Test Condition During Steady State

Engine Out NO _x (g/hp-hr)	5.5-5.8
NO ₂ /NO _x (%) DOC Out (Aged DOC)	400°C=33-35%
NO ₂ /NO _x (%) DOC Out (Degreened DOC)	400°C=45%
DOC SV (1/hr)	105,000
DPF SV (1/hr)	35,000

Combination of SCR-DPF Design and NO₂/NOx Optimization Allows for Good Passive Regeneration with SCR-DPF

SCR-DPF (EGR Off)-30min Regeneration-Urea dosing ANR=1.0

Combination of SCR-DPF Design and NO₂/NOx Optimization Allows for Good Passive Regeneration with SCR-DPF

JM 🕸

SCR-DPF (EGR Off)-30min Regeneration-Urea dosing ANR=1.0

Promising Passive Regeneration was achieved

Test Protocol

- ➤ SCR-DPF loaded up to 3g/l of soot
- Speed A and DOC inlet temperature 400°C was chosen to evaluate passive regeneration. Filters were regenerated for 30 min.
- Passive Regeneration during continuous FTP cycles with urea injection (30hrs).
- > Following regeneration, filters were weighed while still hot at around 180°C
- SCR-DPF was regenerated with EGR off
- ➤ SCR-DPF passive regeneration capability was studied with urea injection (ANR=1.3)

SCR-DPF Design Allows for Good Passive Regen under Transient Test Condition

30 hrs of FTP cycle, with urea injection, ANR~1.3, no urea injection during Soot loading, NO2/NOx ~40%

SCR-DPF Design Allows for Good Passive Regen under Transient Test Condition

30 hrs of FTP cycle, with urea injection, ANR~1.3, no urea injection during Soot loading, NO2/NOx ~40%

Optimized SCR-DPF has similar passive regeneration as CSF

Summary

- > SCR coated DPF systems are being designed to provide improved NO_x reduction in future emission control systems
- Transient results indicate that optimized SCR-DPF system provides high NO_x conversion using same or smaller package volume as compared to 2010 system
- SCR-DPF shows promising passive regeneration with higher engine out NO_x during steady state
- Passive regeneration was achieved during transient cycle under the conditions chosen for this study
- ➤ These results suggest that SCR coated DPF can significantly help in meeting emissions with future higher NO_x engines and thus assist in meeting higher fuel economy targets

