Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio

Gregory K. Lilik* and André L. Boehman**
Formerly of the Pennsylvania State University
*Currently at Sandia National Laboratories CRF
** Currently at University of Michigan

The 18th Directions in Engine-Efficiency and Emissions Research (DEER) Conference
Dearborn, Michigan
October 19, 2012
Overview

Motivation

- Multi-cylinder, turbocharged, common rail, direct injection study in which high ignition quality fuel was found to avoid NO$_x$, PM, THC and CO emissions while maintaining brake thermal efficiency during PCCI operations.

Presentation Focus

- Modified Cooperative Fuels Research (CFR) engine study in which the critical equivalence ratio (Φ) of a fuel was found to be governed by the fraction of highly reactive components (n-paraffins), which increases LTHR.

 - Critical Φ is defined as the minimum Φ at which a fuel can autoignite.

 - Submitted to Energy and Fuels (two publications).
Background

HC & CO emissions in PCCI
• Overly rich mixtures (*Ekoto et al. 2009*)

Overly lean mixtures
• Lean regions with minimal heat release (*Ekoto et al. 2009*)
• Lean squish-volume mixture (*Colban et al. 2007*)
• Overly lean region near the injector (*Lachaux et al. 2007*)

Obtained via planar laser-induced fuel-tracer (toluene) fluorescence at LTC conditions (*Musculus et al., 2007*)
Motivation
Multi-Cylinder PCCI Study

A high ignition quality fuel was found to reduce incomplete combustion of an overly lean charge.

Factors:
- Combustion phasing
- Ignition dwell
- “Critical” equivalence ratio

Effect of LTFT with respect to diesel at the optimized injection timing of -4° ATDC:
- BTE increased by ~1.5%
- NO\(_X\) decreased by ~17%
- PM decreased by ~63%
- THC decreased by ~80%
- CO decreased by ~75%

“Paraffin Enhanced Clean Combustion”
- Publication: *Energy and Fuels 2011*
- Patent application drafted and submitted
 - (#2010-3677)
A high cetane number fuel will have a lower combustion lean limit than a lower cetane number fuel, thus avoiding incomplete combustion.

Determine if the LTFT (high cetane) fuel will autoignite at a leaner equivalence ratio.

- Homogenous charge to simulate a localized region in a diesel spray jet.

Task 1: Find critical Φ of fuels.

Task 2: Find critical Φ of fuels in the presence of simulated EGR (dilution of O_2 with N_2 and CO_2).

Obtained via planar laser-induced fuel-tracer (toluene) fluorescence at LTC conditions (Musculus et al., 2007)
Test Plan

Modified Cooperative Fuels Research (CFR) engine (Szybist et al., 2007)

Note: n-hexane is reported to have a motored cetane number of 42. n-hexane produces a DCN of 50.2 in the IQT.
In general, critical Φ is indicated during a Φ sweep as the Φ where:

- CO (% vol.) abruptly decreases
- CO$_2$ (% vol.) sharply increases
- Bulk cylinder temperature (K) sharply increases
- Sustained high temperature heat release rate occurs

Critical Φ criterion is chronicled in detail in upcoming publications.
Emission Index CO indicates low temperature fuel reactivity by normalizing variation in fueling rate between Φ.

Low temperature fuel reactivity is higher for fuel solely composed of n-paraffins and with longer average chain lengths.
CR 4 (note: diesel did not ignite)

CR 5

CR 6

CR 8
Results

CR 8 with simulated EGR
(O₂ 10.7 vol. %, CO₂ 8 vol. % and N₂ 81.3 vol. %)
ASTM method D6890 (IQT) was used to determine binary blends with the same DCN as n-heptane:

n-heptane: 53.7
n-dodecane 61% and toluene 39%: 53.4
n-dodecane 50% and iso-octane 50%: 53.9
Results

FACE Fuel 1, 2, 3 and 4 at CR 7

CO, 2.6bar BMEP, ~15.6% intake O₂

THC, 2.6bar BMEP, ~15.6% intake O₂
A high cetane number fuel has a lower critical Φ, which is a factor which contributes to reduced incomplete combustion.

EGR significantly influences the critical Φ of fuels with DCN that vary from 43 to 73.

The critical Φ of a fuel is governed by the fraction of reactive components (n-paraffins), which increases LTHR.

These results suggest that a fuel can be blended to have a low ignition quality, which is desired for high efficiency advanced combustion operations and with a high n-paraffin content to reduce CO and THC.
Acknowledgments

- Diesel Combustion and Emissions Laboratory
 Vince Zello, Steve Kirby, Peter Perez, Kuen Yehliu, Yu Zhang,
 Prof. John Agudelo and Prof. Magin Lapuerta

- Support
 DOE Graduate Automotive Technology Education center at PSU
 Dr. Joel Anstrom - GATE Center Director at PSU
 GM R&D Laboratory
 Russell Durrett
 Volvo North America (DE-EE0004232)
 Samuel Mclaughlin

- Special Thanks
 Garry Gunter - ConocoPhillips, Advanced Hydrocarbon Fuels Group
 (now with Phillips 66)

Thank you for your attention.