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Ash Affects DPF Performance 

[SAE 2007-01-0920] 

• Ash accumulates in the 
wall flow-through filter 
and raises ΔP 

• Ash fills DPF surface 
pores and forms a cake 
layer 

• ΔP plot shows 
accumulation mode 

• Lubrication chemistry 
shows and effect on ΔP 
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Filtration concepts 
Depth filtration 

Cake filtration 
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Coupled Experimental System 
  

1. High Resolution Environmental Scanning Electron 
Microscopy with Back-Scattered Electron and Energy 
Dispersive X-Ray imaging 
(HRSEM/BSe-/EDX) 

2. Focused Ion Beam milling (FIB) 
3. Quartz Crystal Microbalance with Dissipation (QCMD) 
4. X-Ray Diffraction (XRD) 
5. X-Ray Computed Tomography (X-Ray CT) 
6. Temperature Programmed Oxidation (TPO) 
7. X-Ray Fluorescence (XRF)  
8. Small Angle X-Ray Scattering (SAXS) 
9. Atomic Force Microscopy (AFM) 
10. X-Ray Photoelectron Spectroscopy (XPS) 

XRD 

FIB 
EDX 

HR-ESEM/BSe- 

Sub-surface, interfacial information 

Elemental  
mapping 

Hi-res imaging 

Structure and composition 

X-Ray CT 
3D imaging 

Aged samples: 
• Lab 
• Field 



• Incombustible, inorganic, ionic compounds 
• In general, high melting temperatures and low solubilities 
• Ca, Zn, Mg in the form of sulfates, phosphates and oxides 
• Trace: Fe, B, Mo, Al, Si, Na(biofuels) 
• ≈0.5-1% by mass of soot, bound to soot 
• Enter as Å-nm size, grow to 100’s of µm 
• Oil consumption ≈ fuel consumption/1000 

 
Base+Ca Base+ZDDP 

CJ4 Base+Mg 

Lubrication-Derived Ash 



Focused Ion Beam 
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[SAE 2012-01-0836] • FIB+SEM+EDX 
• Useful for observing 

interfaces, structure 
• nm-µm 
• Ga+ ions at 5-50 keV 

• Forced sputtering 
• Subsurface detail 

 



Interfacial observations 

Ash-DPF 

Soot-DPF Soot-Ash 
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[SAE 2012-01-0836] 

Ash-DPF: Some gaps observed, Ca and Zn ash appears to form bound layer 
Soot-DPF: Gaps observed at interface 
Soot-Ash: Tight interface, ash acts as filter surface, very little soot penetration 

= Interface 
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X-ray CT 

FIB 

Front Middle Plug 

• FIB milling shows similar 
nm- and µm-scale ash-DPF 
interactions at F, M and P 
axial positions 

• Ash layer thickness has 
been shown previously to 
vary  with axial position 

Ash Distribution 



DPF Surface Pores 

5µm 10µm 5µm 

40µm 

5µm 

EDX 

• FIB milling shows ash trapped in DPF surface pores 
• Little to no ash penetration into filter substrate 
• Illustrates ash depth filtration 
• Suggests that ash particle size/shape may affect ΔP 

10µm 

[SAE 2012-01-0836] 
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Porous Primary Ash Particles 
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 • EDX shows large porous 
particles include Ca, Mg, S, P 

• Adds to understanding of 
formation mechanisms 

• Motivates a multiscale 
interpretation of ash porosity 

• Manipulation of primary ash 
particles may significantly 
reduce bulk ash volume in DPF 
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[SAE 2012-01-1093] 

Temperature induced structural and chemical changes 
Observed thermal effects 
• Crystal growth 
• Chemical separation 

• Ca/Zn, P/S 
• Catalyst sintering 
• Ash particle growth and  

sintering 
• Bulk ash volume 

reduction in pores 
 Mg 
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Ash Type Pore area change 
Base+Ca 102% increase 
Base+ZDDP 196% increase 
Base+Mg 23% increase 
CJ4 (Periodic) 21% increase 

5 min  
at  

880°C 



Ash composition and structure 

Methodology: 
•3 step process with 
increasing complexity 
•i.e. Ca: 

1. Pure CaSO4 
2. Base + Ca 
3. Field sample(focus: 

role of Ca) 
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[SAE 2012-01-1093] 

•Ash observations from XRD: 
• Structural and chemical effects from high T 
• Oxide formation 
• Ash species with multiple structures/phases 
• Ash species chemical interaction with  

DPF substrate 
• Approximate thermal history of field samples 
• Most chem/phys changes occur <5 min. 
• Higher thermal resistance after heating 
• Irreversible chem/phys changes with T 

X-Ray 
Diffraction 



• Special thanks to ORNL’s HTML (M. Lance, J. Howe)  

• 100-1000°C at 50°C/min + 10min at 1000°C 
• Hitachi S-3400N ESEM with Protochips stage 

Mg +CD 

ZDDP+CD CJ4+CD 

CJ4+WC 

Field 

• Initial data shows usefulness of heated SEM stage for ash/soot/DPF 
• Clear differences seen between ash types 

• Zn-ash melts first, Mg-ash melts last 
• Passive ash melts before active ash 

• Gas release from ash! 
• Melting onto DPF surface 
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Before After Heated SEM Stage 
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Clean DPF 

Aged DPF 
CJ4 42g/L 

O 

O2 
NO 

DPF substrate Catalyst/washcoat 

NO O NO2 NO2 
Soot + 

NO+CO/CO2 [Catalytic/passive] 
250-450°C 

O2 

CO 

[Non-catalytic/active] 
>500°C 

CO 
O2 

O O 

CO 

O 

[Catalytic/oxygen spillover] 
Hindered by ash! 

Ash XXX 
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SV=40,000hr-1 
500ppm NO, 10% O2 
T ramp=20°C/min 
N2 pretreat 300°C 
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Probe reaction 
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Ash Effects on DPF Catalyst 

Aged≈50% loss in 
catalytic sites 



[Sappok, DEER 2011,2012] 

• SAXS data hints at a 3.5nm  
diameter particle in soot 

• This would result in 0.1-
0.3% ash in soot 

• 10-20µm ash particles 
observed after 1 
regeneration 
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One regeneration event 

4-5 orders of magnitude in minutes?! 

1µm 1µm 

Ash Formation 



Passive regen. Active regen. 
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Passive regen. 
dpart≈100nm 
Active regen. 
dpart≈1.5µm 
High T treat.  
dpart≈ 5.5µm 
 

Potentially controllable ash properties: 
• Particle size 
• Porosity 
• Inter-particle attractive forces 
• Structure 
• Composition 
• Agglomeration 

 

Potential strategies: 
• Hybrid active/passive regen 
• Post-engine additives 
• Porous wall ash, dense plug ash 
• Thermally resistant ash 
• Increased permeability 

 
 

Theory considerations: 
• ΔPash = ƒ(permeability, layer thickness) 
• Permeability = ƒ(porosity, particle size) 
• Layer thickness = ƒ(inter-particle attraction) 

Ash Manipulation 



Summary 
• We have the tools to potentially ‘solve’ the ash problem 
• The ash/soot/DPF/catalyst system is very complex 
• Currently we are at the point of 

observing/measuring/modeling some of the 
fundamental mechanisms which relate nm-µm scale 
phenomena with emissions systems-aging and 
performance  

• Tools and approach suitable for other aftertreatment 
components (DOC, SCR, DPF+SCR, etc.) 

• Current goals: understand interfacial attractive forces 
(Ash-DPF, ash-soot, soot-DPF) and manipulate them 
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