#### The Next ICE Age DEER 2012



#### Dave Foster Phil and Jean Myers Professor Emeritus Engine Research Center

October 17, 2012

# General Motivation Driving Technology Development

# Maximize efficiency within the constraints of emissions.



### **Efficiency Quest Overview**

- Losses, efficiency decrements, can be identified
- Compression and expansion are wonderful processes thermodynamically
  - Their use, especially expansion, should be maximized
- Combustion irreversibilities of approximately 20% of the fuel's availability are unavoidable
  - This is not a combustion efficiency issue
- Keeping in-cylinder temperatures low is thermodynamically very advantageous
  - Directly impacts extractable expansion work for a specified expansion ratio, which works toward minimizing exhaust energy loss
- Heat transfer is a difficult loss to contend with low in-cylinder temperatures help in two ways
  - Minimized the magnitude of the heat transfer
  - Minimized the availability of the heat transfer energy lost
- Gas exchange work is a necessary expenditure because the engine is a chemical processes.
  - Increases in pumping requirements for any reason carries a fuel economy penalty
- No stone can be left unturned
  - Crevice volumes, friction, rotating inertia, transients, etc.

# **Where To From Here?**

State of the art engines are becoming very good and approaching stretch goals.

#### Challenge:

- Continue to "eek" out further efficiency gains
- Expand these high efficiency operating regimes to larger portions of the engine operating map, and for all operational scenarios – transients

#### Introduce two activities

Gasoline Direct Injection Compression Ignition



Transient response

### **Gasoline Direct Injection Compression Ignition\***

- GDICI is a low temperature combustion (LTC) strategy that offers the potential to increase efficiency and reduce both NOx and PM emissions
- This combustion strategy is highly dependent upon direct injection of gasoline near TDC (within 40° BTDC)
  - The timing and duration of this near-TDC injection can be tailored (based on speed and load) to create an optimized equivalent ratio distribution leading to a stable, staged combustion event (low noise)
- Unlike diesel LTC, GDICI requires no EGR up to 7 bar net IMEP, and PM emissions remain <0.1 g/kg-Fl at loads in excess of 14 bar net IMEP.



\* GM-ERC-CRL and DOE Contract DE-EE0000202



### **LTC: Gasoline Compression Ignition**

#### CFD served an important role during experimental investigations

- Computations provided initial run conditions
- Minimized risk to engine hardware

#### Highlights

- GCI combustion successfully demonstrated over a wide load/speed operating range (1500-2500 RPM, 3-17.8 bar net IMEP)
- Maximum cylinder PRR<10 bar/deg (limit traditionally used within group)
- NOx emissions < EPA US10 (~1 g/kg-Fl)
  - e.g. 5.5 bar net IMEP, 2000 operation required no EGR
  - For comparison, diesel LTC required ~65% EGR
- Near smokeless combustion up to 10 bar net IMEP (PM<<0.1 g/kg-FI)</p>
- Gross ISFC: 175-190 g/kWhr

Gasoline Compression Ignition (GCI) Operating Map



#### Emissions are Low and Combustion is Controllable



- Diesel efficiencies, with very low emissions
- Injection timing, pressure and split ratios give control robustness



## Multi-cylinder Transient#



#### # ERC-DERC and DOE contract DE-EE0000202

|               | Steady<br>State | MAF-<br>MAP* | Quasi-<br>Transient |
|---------------|-----------------|--------------|---------------------|
| Speed         | Х               | Х            | Х                   |
| Fuel Mass     | Х               | Х            | Х                   |
| MAP           |                 | Х            | Х                   |
| MAF           |                 | Х            |                     |
| Intake O2 [%] |                 |              | Х                   |
| Intake Temp   |                 |              | Х                   |
| Rail Pressure |                 |              | Х                   |

\*Eastwood et al., SAE 2009-24-0147

- Explore transient performance for LTC and combustion mode changes
- Identify and quantify the parametric differences between transient combustion and emission, and the values obtained from tests attempting is simulate transient performance via sequential steady state operating conditions

### **Reproducing Transients with Steady State Operation (LTC operation)**

- O2 concentration at IVC is a critical parameter
- It is not properly assessed via MAF and ECU outputs





University of Wisconsin -- Engine Research Center

Combustion Metrics

### Reproducing Transients – Emissions (LTC)

- Emission trends for LTC transients are captured well when dilution at IVC (O2 concentration) is captured
- For complete reproduction of the transient results the effect of long term thermal transients must also be captured.
  - This is more important when the transient involves classis diesel combustion

Intake Conditions





#### Thank you for your attention

#### Questions

- What technologies will be used to further increase engine efficiency? Focus of this presentation
- How will government regulations on fuel economy and emissions influence future engine technologies? In part, they will drive it
- Is there a potential role of diesel engines for light-duty vehicles? Yes
- What role will suppliers play in helping to achieve lowemission, high-efficiency engines of the future? A Big One
- Is there a role for fuels other than gasoline and diesel in the transportation sector? If so, which fuels and which markets? If not, why not? No short answer
- Will consumers accept alternative fuels for light-duty vehicles? If they are convenient, available and affordable
- Do you foresee a large role for hybrid and electric vehicles? Yes
- How can modeling and simulation improve engine efficiency? This presentation

### **Tracking Energy and Exergy Flows**

#### No stone left unturned

- Some losses we must accept, e.g. combustion irreversibilities
- Systematically work to maximize expansion work, and reduce other irreversibilities
  - Stretch goals have been identified giving road maps on pathways to maximizing efficiency
- Understand, and take advantage of, coupling of energy/exergy flows and emission abatement technologies

#### 1<sup>st</sup> Law Energy Balance



#### 2<sup>nd</sup> Law Exergy Balance

\* From K Dean Edwards, et al., Oakridge National Laboratory, DEER 2011

