

Jai G. Bansal, Chief Scientist – Engine Lubricants Infineum USA LP

DEER 2012 – Detroit October 19, 2012

Global Concerns leading to Global Regulations

Environmental Concerns

GHG : Global Warming

Depletion of Natural Resources

Security of Energy Supply

Emissions and Fuel Efficiency regulations

Rapid evolution of engine technologies → Challenges and opportunities for lubricant industry

Challenge:
Continually
adapting
investment
strategies to
maintain leadership
in fast changing
environment

Opportunities for technology leaders to deliver value propositions targeted to specific needs

Today's Presentation

Emissions

- Light Duty Vehicles
- Heavy Duty Vehicles

Fuel Economy

- Light Duty Vehicles
- Heavy Duty Vehicles

Emissions: Heavy Duty Vehicles

Evolution of Emission Legislations

Emission Control Strategies

- Approaches vary with OEMs but involve some combination of
 - Exhaust Gas Recirculation (EGR)
 without or with external cooling
 - Diesel Particulate Filter (DPF)
 - Selective Catalyst Reduction (SCR)
 - Other proprietary systems
- Different approaches lead to different lubricant needs

Lubricant Soot Loading

Increasing soot loading required significant advances in additive technology

After-Treatment Compatibility

- SCR/DPF systems are used in modern engines to reduce PM and NOx in the exhaust
- Efficiency and life of these systems can be compromised by presence of certain lubricant additive emissions in exhaust gases
- Leads to restrictions on permissible amounts of phosphorus, sulfur and metal containing additives in the oil
- Choice of detergent chemistry becomes critical

Role of Detergent Type

Sulphonates

Phenates

Salicylates

Piston Cleanliness

Top No
Bottom Yes
TBN Durability Yes
Rust Control Yes
Antioxidancy No
Sulphur - Free No

Yes No

No

No

Yes

No

Yes Yes Yes Yes Yes

Well-rounded performance and zero sulfur

Role of Detergent Metal

Next Frontier

Non-metallic technologies for piston cleanliness and acid neutralization

Fuel Economy

Tough GHG regulations are coming into effect in all major markets

Source: Passenger Vehicle Greenhouse Gas and Fuel Economy Standards: A Global Update

CCI May 2009 Update

Lubricants have important role to play

- OEMs are looking at all aspects of hardware design and operation for energy efficiencies
- Majority of fuel efficiency improvements will undoubtedly come from hardware changes
- Nevertheless lubricants also have an important role to play
- North American experience illustrates the importance of lubricant contribution to fuel efficiency

Lubricants have important role to play

Weighted Average FEI (Relative to 1980 Baseline)

Steady increase in FE performance over last 3 decades!

NA PCMO Lubricants

Billion gallons per year

Typical energy distribution in a vehicle

Majority of the data taken from "Pinkus and Wilcox, The Role of Tribology in Energy Conservation, Lubrication Engineering, 34 (11), pp 599-610"

Energy Distribution varies with Drive Cycle

On-Road FE Results - Drive Cycle Effect

Fuel Economy triangle

Boundary friction losses

- Friction modifier is the main additive lever to reducing boundary friction losses
- However, increasing use of low friction engines has reduced the effectiveness of conventional friction modifiers
- In addition, the ILSAC quality lubricants are required to demonstrate FE performance not only in the fresh state but upon ageing as well
- Today's friction modifiers must
 - be effective in reducing friction in boundary as well as mixed lubrication regimes
 - retain their effectiveness even after ageing

Advances in FM technology offer clear advantage in ILSAC FE Protocol

FEI, %

Rheological Losses

- Lubricant viscosity is the key factor in controlling energy losses in hydrodynamic and mixed lubrication regimes
 - Bearings, oil pump, piston assembly
- Combined energy losses in these components are estimates to be 3-4%
- NA and Japan have been at the forefront in capturing these energy credits by transitioning to low viscosity lubricants

Sustained march to lighter viscosity grades

Evolution of PCMO Grades in North America

Which viscosity is relevant to FE?

 HTHS viscosity is widely seen as the most critical lubricant property for fuel economy

Lower HTHS → Higher FE

However, HTHS may not be serving us well

HTHS Viscosity @150°C, cP

Much higher FE for oils with VM

Different FE performance for different VMs

Viscosity at ultra high shear rates may be more Important than HTHS

Opportunity to design "FE Optimized" VM by maximizing shear thinning at very high shear rates!

VM Optimized for "Cold Start"

- European NEDC and Japan JC-08 test procedures involve significant "Cold Start" segments
- Recent advances in VM technology have made it possible to minimize lubricant viscosity under the cold start conditions

FE-Optimized VM offers significant advantage in **NEDC** testing

Summary

Summary and Conclusions

- Environmental and energy supply concerns are major drivers of change for the transportation industry
- Engine manufacturers respond to these concerns with new hardware technologies, resulting in rapidly evolving performance challenges for the lubricant industry
- Performance challenges provide opportunities to create value for lubricant developers, lubricant marketers and OEMs
- High technology solutions require high investments
- Early collaboration is essential for optimum deployment of these investments