Ionic Liquids as Novel Engine Lubricants or Lubricant Additives

<u>Jun Qu</u>, Peter Blau, Sheng Dai, Huimin Luo, Bruce Bunting, Dinesh Bansal, Bo Yu Oak Ridge National Laboratory

Gregory Mordukhovich, Donald Smolenski General Motors Corp.

DEER Conference Oct. 6, 2011

Ionic Liquids as Lubricants and/or Lubricant Additives

QUQ

ILs as base stocks

 Significant friction and wear reductions

Output

- Tolerating the operation temperature up to 500 °C
- Suitable for specialty bearing components

ILs as oil additives

- Multi-function: AW, FM, anti-oxidant, detergent
- Allow the use of lower viscosity oils for better fuel economy
- Potentially replace or reduce the usage of the emission catalystpoisoning ZDDP
- Cost effective and easier to penetrate into current lubricant market

Patent: J. Qu, J.J. Truhan, S. Dai, H. Luo, P.J. Blau, "Lubricants or Lubricant Additives Composed of Ionic Liquids Containing Ammonium Cations," U.S. Patent #7,754,664, July 13, 2010.

Hypotheses for lubricating mechanism of ionic liquids (ILs)

- At non-EP condition, function as FM additive by a two-layer structure to reduce friction and wear
 - A bottom layer of anions absorbed onto metal surface
 - A top layer of large-molecule cations attracted by the anions
- At EP condition, function as AW additive by tribo-chemical reactions between the ions and the metal surface to form a protective boundary film

A layer of anions absorbed onto metal surface

A thin anti-wear film formed by ILs reacting with metal surface

Boundary anti-wear film

Metal surface

Background: lubrication Regimes (Stribeck curve)

Piston ring-cylinder liner contact in Engine

- Top ring reversal zone (5-10 mm) determines the durability due to wear
 - BL: high-viscosity lubricants provide better wear protection
- Majority of the stroke (~80 mm) dominates the energy loss by friction
 - EHL: low-viscosity lubricants produce lower friction thus better fuel economy.
- Trend: using lower viscosity oils enabled by <u>improved</u> <u>base stock</u> and/or <u>anti-wear additives</u>.
 - Mobil 1 Advanced Fuel Economy oils (0W20 and 0W30) claim to improve fuel economy by up to 2%.

Screening bench test: ring-on-liner reciprocating sliding

- Test materials: actual piston top ring (Mocoated) against cylinder liner (cast iron)
- Screening test (cross ring-on-liner reciprocating sliding) at RT (23 °C) and 100 °C
 - Normal load: 160 N → Hertzian contact stress (pointcontact): 781 MPa (max) and 521 MPa (mean).
 - 10 Hz, 10 mm stroke (Mean sliding speed: 0.2 m/s)
 - − λ -ratio at 100 °C: 0.015 << 1 → boundary lubrication
 - − λ -ratio at 23 °C: 0.09 << 1 → boundary lubrication

Same lubrication regime as in an actual engine, but a lower λ -ratio indicating worse lubrication condition \rightarrow accelerated wear process.

Test coupons from actual piston rings and cylinder liners

7 Managed by UT-Battelle for the U.S. Department of Energy

ational Laborator

Ionic liquids as neat lubricants – substantially friction/wear reductions

Ring-liner contact

 [1] Qu, J., Truhan J.J., Dai S., Luo, H., Blau, P.J., Tribology Letters, 22(3) 2006, pp. 207-214.
[2] J. Qu, P.J. Blau, S. Dai, H. Luo, H.M. Meyer III, J.J. Truhan, Wear 267(5-8) (2009) 1226-1231. [3] J. Qu, P.J. Blau, S. Dai, H. Luo, H.M. Meyer III, Tribology Letters 35(3) (2009) 181-189..

Lubricative, anti-wear boundary film formed on the metal surface in IL-lubrication

[4] J. Qu*, M. Chi, H.M. Meyer III, P.J. Blau, S. Dai, H. Luo, Tribology Letters 43(2) (2011) 205-211.

Recently developed low-viscosity ILs

- 200 °C higher thermal stability than hydrocarbon oils
- 20% lower viscosity than 0W-10 engine oil
- Significantly better wear protection than 0W-10 engine oil
- Lower pressure-viscosity coefficient than oils potential lower friction under EHL

	Decomp.	Density	Kinematic viscosity (cSt)				
Lubricant	temp (°C)	(g/ml, 23°C)	0 °C	10 °C	23 °C	40 °C	100 °C
Mobil 1 ^{1M} 5W30 engine oil	263	0.80	593.0	299.8	140.9	63.3	10.5
Royal Purple ^{1M} 0W-10 engine oil	236	0.87	182.4	99.2	50.5	24.6	4.8
IL 17	472	1.42	130.6	70.8	35.7	17.8	4.1

	23 °C	150 °C	
Lubricant	Wear rate	Wear rate	
	(mm ³ /N-m)	(mm ³ /min)	
IL17	1.8x10 ⁻⁷	0.6×10^{-4}	
Royal Purple TM 0W-10	3.5×10^{-7}	7.9×10^{-4}	
Mobil 1 ^{11M} 5	W-30 engine oil	0.5×10^{-4}	

Ionic liquids as oil additives

- Enhanced wear protection by ionic liquid additives
 - improves engine durability and extended service intervals,
 - prevents the wear-induced engine efficiency loss and emission increase, and
 - more importantly, allows using less viscous oils, leading to better fuel economy.

ORNL discovered a unique group of ILs:

- Mutual miscibility with hydrocarbon oils (first in the literature)
- Fluorine-free
- Non-corrosive
- High thermal stability
- Excellent wettability
- Friction reduction and anti-wear functions when added to oils

Recent breakthrough: oil-miscible ILs

High thermal stability ۲

Non-corrosive to AI or Fe

500.0 µm

AI

In

air

In IL

Fully miscible with lubricating oils ۲

for 60 days

IL on cast iron surface

Oil-miscible ILs as oil additives are effective in anti-scuffing and anti-wear

Lubricont	Viscosity	Wear rate (mm ³ /N-m)			
	(cSt, 23 °C)	Liner	Ring		
PAO 4 cSt base oil	34.5	$5.9 \pm 4.7 \times 10^{-4}$	>1.0×10 ⁻⁶		
PAO+IL(5%)	36.6	$5.6 \pm 3.5 \times 10^{-7}$	$1.4\pm0.5\times10^{-8}$		
5W30 engine oil	140.9	$4.7\pm0.3\times10^{-7}$	$6.6 \pm 4.9 \times 10^{-9}$		
5W30+IL(5%)	149.9	$1.3\pm0.2\times10^{-7}$	$2.0\pm1.6\times10^{-9}$		

The addition of ILs make the low-viscosity base oils perform as well as the more viscous, fully formulated engine oils in both friction and wear perspectives.

13 Managed by UT-Battelle for the U.S. Department of Energy

Boundary film on cast iron liner lubricated by PAO+IL(5%)

Boundary film on cast iron liner lubricated by 5W-30 engine oil+IL(5%)

A thicker boundary film containing elements from both IL and ZDDP confirms the synergistic effect in wear protection.

15 Managed by U1-Battelle for the U.S. Department of Energy

Presentation_name

Summary

Great progress achieved in developing ILs for lubrication

- Low-viscosity ILs as neat lubricants
 - Lower viscosity, higher thermal stability, and superior wear protection than fully-formulated 0W-10 engine oil.
- Oil-miscible ILs as oil additives
 - High thermal stability, non-corrosive, excellent wettability, and effective in antiscuffing and anti-wear.
- Future work
 - Motored and fired engine tests for demonstrating improvement on engine efficiency and durability.
 - Accelerated fired engine tests for investigating effects of ILs on emission catalyst aging and poisoning.
 - Full formulation of IL-containing lubricants.

