

An In-Cylinder Imaging Survey of Low-Temperature, High-Efficiency Combustion Strategies

Mark Musculus

Sandia National Laboratories

Chemiluminescence Movies:

Sage Kokjohn and **Rolf Reitz** - University of Wisconsin – Madison **Clement Chartier** and **Öivind Andersson** – Lund University, Sweden

> DEER 2011 - 17th Directions in Engine-Efficiency and Emissions Reduction Research Conference Detroit Marriott at the Renaissance Center Monday, October 3, 2011

Sponsor: Program Manager: U.S. DOE Office of Vehicle Technologies Gurpreet Singh

Understanding of in-cylinder LTC emissions mechanisms has improved in recent years

- Original motivation for low-temperature combustion (LTC): emissions compliance \rightarrow in-cylinder
 - e.g., U.S. 2007/2010 heavy-duty diesel on-road
 - PM & NOx reductions, but UHC, CO & BSFC problems
 - Optical diagnostics & chemical kinetics lend insight

Thermodynamic analysis: quantitative efficiency comparisons among operating strategies

- Recently, some LTC strategies have demonstrated improvements in both emissions and efficiency
 - HCCI, RCCI: 50%+ ind. efficiency at 2010 PM/NOx
- Can we quantify contributions of r_c , ϕ , EGR, etc. to efficiency among engines using thermodynamics?
 - Gross, indicated fuelconversion efficiency: $\eta_{fc,i,g} = f(r_c, \phi, EGR,...)$
 - **Differential** $d\eta_{fc,i,g} = \frac{\partial \eta}{\partial r_c} dr_c + \frac{\partial \eta}{\partial \phi} d\phi + \frac{\partial EGR}{\partial EGR} dEGR + ...$
 - Integration gives: $\Delta \eta_{1\rightarrow 2} = \Delta \eta_{r_c} + \Delta \eta_{\phi} + \Delta \eta_{EGR} + \dots$
 - Individual contributions are path dependent
 - Parameterize: $r_c = r_{c,1} + \alpha (r_{c,2} r_{c,1}), \ \phi = \phi_1 + \alpha (\phi_2 \phi_1), \dots$ • Use linear variation: $\alpha = 0 \rightarrow 1$

"Simple-as-possible" four-state model for thermodynamic efficiency analysis

- $C_p \& C_v$ vary with T & gas composition
- 1→2: Isentropic compression to reduced r_c (after TDC)
 - Accounts for combustion phasing & finite duration of combustion
 - $heta_{comb}$ approximately at CA50
- 2→3: Constant-volume combustion
 - Account for combustion efficiency
- $3 \rightarrow 4$: Expansion with heat transfer (HT)

• Use
$$\Delta S_{3\to 4} = \int \frac{dQ_{HT}}{T} = \frac{-\Delta Q_{HT}}{T_{HT}}$$

- T_{HT} gives same ΔS as integral
- θ_{HT} approximately at HT centroid

<u>Cautions!</u> 1. Model is for analysis, not prediction

2. Results depend on assumptions, inputs, and path between engine configurations (not universal!)

Sandia optical heavy duty engine with dual-fuel injection

- Bosch GDI (100 bar) mounted in place of side-window
 - Premixed gasoline-like fuel (SI, HCCI, RCCI)
- 8-hole production Cummins XPI common-rail fuel injector (300-1600 bar) in cylinder head
 - Direct inj. of diesel-like fuel (CIDI, RCCI, PCI, MK)
- Sprays illuminated using CW high-power LED white-light source through side-windows

Conventional spark ignition (gasoline): 33.6% gross indicated efficiency

r _{c,geom}	10
θ_{comb} (r _c)	15° (8.4)
ϕ_{global}	1
η_{comb}	97%
Q _{HT} /LHV	25%?
θ _{нт} (Т _{нт})	25°? (2815 K)
Intake O ₂	21%
η_{fcig}	33.6%

 Q_{HT} /LHV and θ_{HT} are highly uncertain, with order-of-magnitude variations in predictions among global correlations (Caton, IC10, 2011 US Nat. Comb. M.)

CIDI 11.8 %-pt. efficiency gain over SI: r_c , ϕ , & comb. phasing (+heat transfer?)

	SI	CIDI	$\Delta\eta_{\text{fc,l,g}}$	
r _{c,geom}	10	16	4.9%	
θ_{comb}	15°	10°	1.8%	0 -240 -210 -180 -60 -30 0 30 60 90
ϕ_{global}	1	0.5	2.1%	-11
Premix	100%	0%	-1.9%	
$\phi_{DI,TDC}$	(1)	1	-	
η_{comb}	96%	99%	0.7%	
Q _{HT} /LHV	25%?	16%?	4.2%?	
θ_{HT}	25°?	25°?	-	
Intake O ₂	21%	21%	-	
$\eta_{\text{fc,i,g}}$	33.6%	45.4%	11.8%	Sandia National

CRE P	Cl effi	ciency	, simil	ar to conventional
	CIDI,	η_{comb}	, pena	Ity is significant
	CIDI	PCI	$\Delta\eta_{\text{fc,l,g}}$	
r _{c,geom}	16	14	-1.5%	
θ_{comb}	10°	5 °	1.2%	
ϕ_{global}	0.5	0.4	0.4%	-240 -210 -180 -60 -30 0 30 60 90 -26
Premix	0%	25%	0.8%	
$\phi_{DI,TDC}$	1	.7	0.9%	N. 1. 1
η_{comb}	99%	95%	-1.7%	
Q _{HT} /LHV	16%?	14%?	0.9%	
θ_{HT}	25°?	25°?	-	
Intake O ₂	21%	15%	0.8%	
T _{Intake}	30 °C	60 °C	-0.3%	
η _{fc,i,g}	45.4%	46.9%	1.5%	Sandia National

CRE M	K effi	ciency	y simil	ar to conventional
	CIDI,	η_{comk}	, pena	Ity is significant
	CIDI	MK	$\Delta\eta_{\text{fc,l,g}}$	
r _{c,geom}	16	16	-	
θ_{comb}	10°	15°	-1.9%	
ϕ_{global}	0.5	0.4	0.3%	-240 -210 -180 -60 -30 0 30 60 90 +1
Premix	0%	25%	0.8	
φ _{DI,TDC}	1	.9	0.4	
η_{comb}	99%	95%	-1.7%	
Q _{HT} /LHV	16%?	14%?	0.9%?	
θ_{HT}	25°?	30°?	0.4%	
Intake O ₂	21%	15%	0.9%	
T _{Intake}	30 °C	60 °C	-0.3%	
$\eta_{\text{fc,i,g}}$	45.4%	45.2%	-0.2%	Sandia National Laboratories

COMBUSTION RESEARCH FACILITY

PCI, MK combustion efficiency: Post-injections can reduce UHC 20-25%

 Optical diagnostics: late-cycle formaldehyde (red) near injector

Chemical kinetics: cause=overmixing

HCCI gains: uniformly low T & comb. phasing (+heat trans.?); loss from r_c

	CIDI	HCCI	$\Delta\eta_{\text{fc,l,g}}$	
r _{c,geom}	16	14	-1.5%	
θ_{comb}	10°	5 °	1.2%	
ϕ_{global}	0.5	0.5	-	Cycle 1 -6
Premix	0%	100%	3.5%	
φ _{DI,TDC}	1	-	-	
η_{comb}	99%	97%	-0.9%	
Q _{HT} /LHV	16%?	12%?	1.9%?	
θ_{HT}	25°?	30°?	0.4%	
Intake O ₂	21%	18%	0.3%	and preserves and
T _{Intake}	30 °C	60 °C	-0.3%	
$\eta_{\text{fc,i,g}}$	45.4%	50%	4.6%	Sandia National Laboratories

COMBUSTION RESEARCH FACILITY

RCCI gains from uniformly low T & comb. phasing (+heat transfer?)

	CIDI	RCCI	$\Delta\eta_{\text{fc,l,g}}$	
r _{c,geom}	16	16	-	
θ_{comb}	10°	5 °	1.3%	
ϕ_{global}	0.5	0.4	0.6%	-240 -210 -180 -00 -30 0 30 00 90
DI _{TDC}	0%	80%	2.3%	
φ _{DI,TDC}	1	.5	1.3%	
η_{comb}	99%	97%	-0.9%	A NY (MAR
Q _{HT} /LHV	16%?	12%?	1.8%?	0 1 - /
θ_{HT}	25°?	30°?	0.4%	
Intake O ₂	21%	21%	-	
T _{Intake}	30 °C	30 °C	-	
$\eta_{fc,i,g}$	45.4%	52.2%	6.8%	Sandia National Laboratories

COMBUSTION RESEARCH FACILITY

Artificial ignition shows flame propagation potential in RCCI

 Heat flux measurements (SAE 2004-01-2996, Chang et al): different heat transfer for flame propagation (SI) and distributed auto-ignition (HCCI)

- RCCI might support both, so heat transfer (efficiency) among RCCI engines may depend on regime
- Artificial ignition (by laser) shows some RCCI regions can support flame propagation

Conclusions: Thermo. model shows LTC efficiency gains from T uniformity, comb. phasing (and HT?)

- Simple 4-state thermodynamic model provides quantitative comparisons among engine combustion strategies
 - Results depend on assumptions and path: <u>Results are not universal!</u>
- Model: reducing comb. T for emissions can also improve efficiency
 - HCCI & RCCI gain from uniformly low T, comb. phasing, (& HT?)
- Heat transfer uncertainty & efficiency effects are considerable
 - Effects of flames, sprays, sequential ignition, etc.

