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Outline 

• Motivation and background 
• Engine and experimental setup 
• Identification of the mechanisms controlling RCCI 

energy release 
– Chemiluminescence imaging 
– Fuel tracer fluorescence imaging 

• Controlling PCI heat release using fuel reactivity 
stratification 

• Conclusions 
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Motivation 

• Highly-premixed compression ignition (PCI) strategies (e.g., 
HCCI) offer attractive emissions and performance 
characteristics; however, in practice PCI strategies are 
generally confined to low-load operation due to  
– lack of adequate combustion phasing control 
– difficulties controlling the rate-of-heat release 

• Metal engine experiments have shown that RCCI combustion 
using in-cylinder fuel blending allows low NOx and soot 
operation over a wide range of operating conditions 
– Combustion phasing is controlled by overall fuel reactivity 
– Rate-of-heat release is controlled by fuel reactivity stratification 

RCCI Fuel  
Delivery Strategy 
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Background – RCCI Combustion 

• Metal engine experiments have 
demonstrated controlled PCI 
combustion over a range of 
conditions 
– NOx and soot below the 2010 limits 
– GIE above 50% from 4 to 15 bar 

IMEP 
• CFD modeling predicts that the 

energy release is controlled by the 
fuel reactivity stratification 
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Experimental Setup 

• RCCI engine experiments were 
performed in the Sandia heavy-
duty optical engine 

• Gasoline primary reference 
fuels (PRF) used for RCCI 
operation 
– iso-octane delivered with GDI 

early in the cycle (240° BTDC) 
– n-heptane delivered through 

the common-rail injector 
• Ignition and reaction zone 

growth 
– High-speed combustion 

luminosity imaging  
• Fuel distribution prior to ignition 

– Toluene fuel tracer PLIF 
Engine Cummins N-14 
Bore x stroke 13.97 x 15.24 cm 
Displacement 2.34 L 
Geometric compression ratio 10.75 

GDI 
100 bar 
7x150 micron 

 

Common-rail 
600 bar 
8x140 micron 
Inc. Ang. 152  
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High-Speed Chemiluminescence Imaging 

Piston Crown Window Cylinder Head Window 

Load: 4.2 bar IMEP GDI SOI:  -240°ATDC  
Speed: 1200 rpm CR SOI: -57°/-37° ATDC 
Intake Temperature: 90° C Equivalence ratio: 0.42 
Intake Pressure: 1.1 bar abs. Iso-octane mass %:  64 

Effective Gain = 1 
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High-Speed Chemiluminescence Imaging 
• Ignition occurs first near the bowl rim and in the 

squish and the reaction zone grows to 
consume the remainder of the charge 

• Fuel PLIF imaging shows that  the fuel 
reactivity is highest (i.e., PRF is lowest) in the 
squish and near the bowl rim 
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using PLIF imaging 
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Fuel Reactivity Stratification 

• Baseline results suggest that fuel reactivity stratification controls 
both the ignition location and combustion duration. 

• Can fuel reactivity stratification be used to control the heat release 
rate?  

Engine speed 1200 rpm 
Gross IMEP 4.2 bar 
Intake temperature 73 to 100 °C 
Intake pressure 1.1 bar abs. 
Inlet oxygen concentration 21 vol. % 
CR SOI -165° to -15° ATDC 
GDI SOI -240° ATDC 
n-heptane mass (CR) 36% 
iso-octane mass (GDI) 64% 
Premixed equivalence ratio 0.27 
Overall equivalence ratio 0.42 

• A common-rail (n-heptane) 
injection timing sweep was 
used to generate a range of 
stratification from very mixed 
(early SOI) to very stratified 
(late SOI) 

• CA50 was held constant at 2° 
ATDC by adjusting the intake 
temperature 
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Increased Mixing Time 

• Minimum in the peak heat release rate is observed near an 
SOI of 50° BTDC 

• Combustion becomes violent at very early and near TDC 
injection timings 
– Diesel-like injection timings perform poorly for dual-fuel operation 

• Combustion rate can be controlled by controlling mixing time 
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Fuel Reactivity Stratification 

• Early injection: Random ignition 
locations and volumetric combustion 

• Mid injection: Controlled energy 
release from the piston bowl rim 
inward 

• Late injection: Ignition near the bowl 
rim followed by rapid  heat release 
throughout the jet 
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Fuel Reactivity Stratification 

• Early injection:  Charge is very well mixed (near global PRF) 
    Under stratified charge results in rapid 
        energy release (HCCI-like) 

• Mid injection:  Spatial gradient in ignition delay results in 
   controlled energy release 

• Late injection:  Jet-like structure with many near stoichiometric 
   regions (jet has nearly uniform ignition delay) 
    Rapid energy release in jet 

 

Δτ = ~30  CA  Δτ = ~5  CA  

Average PRF in radial direction 

PRF Maps shown 
at -5  ATDC 

Δτ = ~5  CA  
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Conclusion 
Split-Injection RCCI Combustion 
• Chemiluminescence imaging showed that ignition generally occurred in 

the downstream portion of the jet and moved gradually upstream 
towards the center of the combustion chamber 

• Fuel-tracer PLIF imaging showed that the fuel distribution (i.e., PRF 
number) correlates with the observed ignition location(s) and reaction 
zone progression 

Heat-Release Rate Control Using Reactivity Stratification 
• Fuel reactivity stratification controls the energy release and the gradient 

in the stratification controls the direction of reaction zone growth 
– At early injection timings, the charge is too mixed and the ignition delay is 

nearly constant throughout the chamber 
– At late injection timings, the charge is too stratified and the ignition delay 

in the n-heptane jet is nearly constant 
• Using fuel reactivity stratification, the heat release rate can be tailored 

to maximize efficiency while meeting engine platform constraints (e.g., 
combustion noise) 
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Backup Slides 
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Toluene Fuel Tracer PLIF - Setup 

Image Acquisition 
• Images were acquired in sets of 4 

1. Background image 
2. Uniform calibration image 
3. GDI distribution image 
4. Common-rail distribution 

image 

1 2 3 4 
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Toluene Fuel Tracer PLIF - Setup 

Image Processing 
• Temperature correction 

– Fluorescence quantum yield 
decreases with increasing 
temperature 

– Absorption cross section 
increases with increasing 
temperature 

• Images are then processed 
iteratively accounting for 
evaporative cooling and real gas 
properties 
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Toluene Fuel Tracer PLIF - Setup 

• 4th harmonic of an Nd:Yag laser (266 
nm) was formed into a thin horizontal 
sheet using an f=-50 mm cylindrical 
lens followed by an f=500 mm plano-
spherical lens 

• Sheet was positioned 10 mm below the 
firedeck 

• Fuel was doped with 1% toluene by 
volume 

• An intensified CCD camera sensitive in 
both the UV and visible ranges was 
used to image the toluene fluorescence 

• Engine was operated using 100% 
nitrogen (i.e., inert) to avoid oxygen 
quenching of the toluene fluorescence  
 

GDI SOI -240° ATDC 
CR SOI1/SOI2 -57°/-37° ATDC 
TDC density 11.1 kg/m3 

N2 Dilution 100% 

Engine Cummins N-14 
Bore x stroke 13.97 x 15.24 cm 
Displacement 2.34 L 
Geometric compression ratio 10.75 

26 mJ/pulse 
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Toluene fuel tracer PLIF 
• Vapor fuel from the first common-rail injection 

penetrates to the liner (liquid length is near bowl rim)  
• Downstream portion of the jet mixes to around a 50-

50 blend of iso-octane and n-heptane by the time of 
the second injection.  PRF number increases towards 
the nozzle 

• Second injection enhances gradient in fuel reactivity 
 downstream near PRF 45 and upstream out of jet 
near PRF 75 

• Fuel distribution prior to ignition correlates with 
observed ignition location and reaction zone 
progression 
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Ignition Delay 

• Constant volume ignition 
delay using the SENKIN 
code and a reduced PRF 
mechanism 

• The initial conditions 
correspond to representative 
TDC conditions from the 
current experiments 
– initial pressure = 27 bar 
– initial temperature = 837 K, 

and  
– 21% intake oxygen 

concentration). 
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PRF and Equivalence Ratio PDFs 

• PDFs calculated from the each single-shot image (40 per 
set) and averaged to provide a representative PRF and 
equivalence ratio distribution for each case 

20 
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Background – RCCI Combustion 

• Relative ratios of more- and less reactive fuels controls 
combustion phasing (e.g., effective cetane number) 
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Mechanism of reaction zone growth 
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30 mm 

• Laser ignition is most consistent at 
the 30 mm location 

– Equivalence ratio increases with 
increasing distance from injector 

– Upstream regions are likely too 
lean to consistently support flame 
propagation 

Gain = 1 

Laser ignition 
location is 13 mm 
below firedeck 
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Fuel Reactivity Stratification 

• Fuel reactivity (PRF) and equivalence 
ratio stratification are coupled.   

• NOx bounds the upper limit of equivalence 
ratio stratification at φ=0.5 (Dec. et al. 
SAE 2006-01-0629) 

• In the present study the equivalence ratio 
can vary from 0.27 to 0.5 (i.e., premixed to 
NOx limit) 

• The equivalence ratio range to avoid NOx 
formation corresponds to a PRF range of 
100 (premixed iso-octane) to 54 
 
 
 

Constant volume ignition delay 
calculations suggest that PRF 
stratification dominates equivalence 
ratio stratification at the present 
conditions 
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