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Motivation

« Highly-premixed compression ignition (PCIl) strategies (e.q.,
HCCI) offer attractive emissions and performance
characteristics; however, in practice PCI strategies are
generally confined to low-load operation due to

— lack of adequate combustion phasing control
— difficulties controlling the rate-of-heat release

* Metal engine experiments have shown that RCCI combustion
using in-cylinder fuel blending allows low NOx and soot
operation over a wide range of operating conditions

— Combustion phasing is controlled by overall fuel reactivity

— Rate-of-heat release is controlled by fuel reactivity stratification

Diesel
CN = 46 RCCI Fuel

Delivery Strategy

Gasoline
E— (R+M)/2=91.6
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Experimental Setup @3

Injector
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GDI
« RCCI engine experiments were g . -/Mirror 100 bar
performed in the Sandia heavy- e 7x150 micron
duty optical engine

« Gasoline primary reference

fuels (PRF) used for RCCI
operation Ring'~

— iso-octane delivered with GDI
early in the cycle (240° BTDC)

— n-heptane delivered through

Common-rail
— Windows 600 bar

5 [ 8x140 micron
Inc. Ang. 152

Window

Filters
/ 500 nm SWP + BG 39

the common-rail injector vt o7
Housing

« Ignition and reaction zone
growth

— High-speed combustion

Cummins

Sing!e-CyIinder

luminosity imaging Engine Block
* Fuel distribution prior to ignition  [Engine Cummins N-14
— Toluene fuel tracer PLIF Bore x stroke 13.97 x 15.24 cm
Displacement 2.34 L

@ Geometric compression ratio 10.75
5/13 Directions in Engine-Efficiency and Emissions Researcip



High-Speed Chemiluminescence Imaging

Load: 4.2 bar IMEP GDI SOl: -240°ATDC

Speed: 1200 rpm CR SOI: -57°/-37° ATDC
Intake Temperature: 90° C Equivalence ratio: 0.42
Intake Pressure: 1.1 bar abs. Iso-octane mass %:

-60°

Pressure [bar]
AHRR [/ 9

40 -20 0 20 40
Crank [° ATDC]

T

Effective

Piston Crown Window Cylinder Head Window
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‘High-Speed Chemiluminescence Imaging

GDI
iyr . . . Injector
- Ignition occurs first near the bowl rim and in the iy Fuel Tracer
squish and the reaction zone grows to Bowl Rim PLIF Imaging
consume the remainder of the charge c :
ommon-rail

Cylinder Head

* Fuel PLIF imaging shows that the fuel Injector
reactivity is highest (i.e., PRF is lowest) in the < —

squish and near the bowl rim Dump Laser Sheet

PRF (octane number)
Distribution evaluated
using PLIF imaging
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Fuel Reactivity Stratification

« Baseline results suggest that fuel reactivity stratification controls
both the ignition location and combustion duration.

« Can fuel reactivity stratification be used to control the heat release

rate?

« A common-rail (n-heptane)
injection timing sweep was
used to generate a range of
stratification from very mixed
(early SOI) to very stratified
(late SOI)

 CA50 was held constant at 2°
ATDC by adjusting the intake
temperature

813

Engine speed

Gross IMEP

Intake temperature

Intake pressure

Inlet oxygen concentration
CR SOl

GDI SOl

n-heptane mass (CR)
iso-octane mass (GDI)
Premixed equivalence ratio
Overall equivalence ratio

1200 rpm
4.2 bar
7310 100 °C
1.1 bar abs.
21 vol. %
-165° to -15° ATDC
-240° ATDC
36%

64%

0.27

0.42
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Fuel Reactivity Stratification

 Minimum in the peak heat release rate is observed near an

SOl of 50° BTDC

« Combustion becomes violent at very early and near TDC

injection timings

— Diesel-like injection timings perform poorly for dual-fuel operation
« Combustion rate can be controlled by controlling mixing time
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SOl -145 Cycle: 4 SOl -50 Cycle: 4

Early injection: Random ignition
locations and volumetric combustion
Mid injection: Controlled energy
release from the piston bowl rim
inward

« Late injection: Ignition near the bowl
___ rim followed by rapid heat release 10Q o e
?Jf‘—,l throughout the jet CR SOl [deg. ATDC]

I. |
B N
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Fuel Reactivity Stratification ERENaoeno

SOl -145° ATDC
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« Early injection:

* Mid injection:

« Late injection:

. at-5 ATDC

Injector

Piston
Bowl Rim
Common-rail Cylinder Head
Injector /Window
VN
Beam S 266 nm
Dump Laser Sheet

Charge is very well mixed (near global PRF)
- Under stratified charge results in rapid
energy release (HCCI-like)

Spatial gradient in ignition delay results in
controlled energy release

Jet-like structure with many near stoichiometric
regions (jet has nearly uniform ignition delay)
- Rapid energy release in jet
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Conclusion

Split-Injection RCCI Combustion

« Chemiluminescence imaging showed that ignition generally occurred in
the downstream portion of the jet and moved gradually upstream
towards the center of the combustion chamber

» Fuel-tracer PLIF imaging showed that the fuel distribution (i.e., PRF
number) correlates with the observed ignition location(s) and reaction
zone progression

Heat-Release Rate Control Using Reactivity Stratification
» Fuel reactivity stratification controls the energy release and the gradient
in the stratification controls the direction of reaction zone growth

— At early injection timings, the charge is too mixed and the ignition delay is
nearly constant throughout the chamber

— At late injection timings, the charge is too stratified and the ignition delay
in the n-heptane jet is nearly constant

| Using fuel reactivity stratification, the heat release rate can be tailored
to maximize efficiency while meeting engine platform constraints (e.g.,
combustion noise)
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Toluene Fuel Tracer PLIF - Setup

Injector

Image Acquisition Piston
* Images were acquired in sets of 4 Bowl Rim
1. Background image

Common-rail

2. Uniform calibration image Injector Window

3. GDI distribution image /

4. Common-rail distribution Beam < 266 nm
image Dump Laser Sheet

@
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Toluene Fuel Tracer PLIF - Setup
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Imaqge Processing Ensemble averaged GDI and common-
rail images are combined to calculate
overall PRF and equivalence ratio
distributions

 Temperature correction

— Fluorescence quantum yield
decreases with increasing
temperature | PRF /M) Equivalénce

— Absorption cross section e s [Ratio”
increases with increasing 8 s e

70 -

temperature 04 05 | g6 07

* Images are then processed A M ! N WL A
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Toluene Fuel Tracer PLIF - Setup

Engine Cummins N-14
Bore x stroke 13.97 x 15.24 cm
Displacement 2.34 L
Geometric compression ratio 10.75

4% harmonic of an Nd:Yag laser (266
nm) was formed into a thin horizontal
sheet using an f=-50 mm cylindrical
lens followed by an =500 mm plano-
spherical lens

Sheet was positioned 10 mm below the
firedeck

Fuel was doped with 1% toluene by
volume

An intensified CCD camera sensitive in
both the UV and visible ranges was
used to image the toluene fluorescence

Engine was operated using 100%
nitrogen (i.e., inert) to avoid oxygen
quenching of the toluene fluorescence

17/13

Common-rail
Injector

~ ‘-/—Mirror /

Filters:
WG 295 + UG5

1CCD Camera
Princeton Instruments
P-MAX3:1024i

SBIntensifier

e 266 nm Laser Sheet=== ==~

26 mJ/pulse
Piston-Crown
Window
Piston
Extended
Cylinder
Housing
Cummins
/Single—Cylinder
Engine Block
GDI SOl -240° ATDC
CR SOI1/S0OI2 | -57°/-37° ATDC
TDC density 11.1 kg/m3
N, Dilution 100%
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Toluene fuel tracer PLIF

« Vapor fuel from the first common-rail injection
penetrates to the liner (liquid length is near bowl rim)
* Downstream portion of the jet mixes to around a 50-
50 blend of iso-octane and n-heptane by the time of 7z = — 1 | "
the second injection. PRF number increases towards iﬁ&W} £
the nozzle 7 80 s £
« Second injection enhances gradient in fuel reactivity > §
- downstream near PRF 45 and upstream out of jet 0 60 o
near PRF 75 -35° - ) Sl A )
| Fuel distribution prior to ignition correlates with WG 110 g
observed ignition location and reaction zone [ 605 =
progression f 45 o o §
3
—_256505 l10 g
WAl I> X :10
’ 7§§% 55
A — S0 a5 lo
GDI SOl =-240 ATDC 55 5
CR SOl 1=-57 ATDC .21° L1o
CR SOI 2 =-37 ATDC | 30 40 50 60 70
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Ignition Delay

« Constant volume ignition
delay using the SENKIN

O o e e e e e O ESUAELAL  n m T T T T T T
code and a reduced PRF N —*-PRF O |
. e
mechanism i} “ —prr oo
. . o I —i— PRF 64
 The initial conditions E 6f —e—PRF 80 ]
. >
correspond to representative 3 °f s 1
TDC conditions from the 5 2_ b @rztorem -
current experiments 5 1 AX :
— initial pressure = 27 bar : FeSiannnsy 2000000
— initial temperature = 837 K, ) S M e
0 0.5 1 1.5 2 2.5 3
and Equivalence Ratio [-]
— 21% intake oxygen
concentration).
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PRF and Equivalence Ratio PDFs

 PDFs calculated from the each single-shot image (40 per

set) and averaged to provide a representative PRF and
equivalence ratio distribution for each case
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Background — RCC| Combustion

 Relative ratios of more- and less reactive fuels controls
combustion phasing (e.g., effective cetane number)

90 | ! | | !
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% ‘Total fuel quantitiy
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s L S A
2 A N
@ T0F e A N
O | : . s s | _Jo
o ... e”
S
— 60

-40 -20 0 +20 +40

Change in Temperature (K)
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Mechanism of reaction zone growth @3

Orsongas

CR SOI: -57/-37° ATDC | |
Laser Spark Timing: -10° ATDC Average Equivalence Ratio at -10° ATDC
Equivalence ratio: 0.42 =
Iso-octane mass %: 110 g,
0.4 5
% 60 g 0.3 0.45 0.5 %Ci
ry 3, s o =
[}] T y—
a O < 3
0.6 /'l 1o §
, , |
30 40 50 60 70 ©

Distance from Injector [mm]

« Laser ignition is most consistent at
AN the 30 mm location
\ — Equivalence ratio increases with
increasing distance from injector

,' — Upstream regions are likely too
/ lean to consistently support flame
P propagation

Laser ignition
location is 13 mm
below firedeck
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Fuel Reactivity Stratification GO,
PRF
*  Fuel reactivity (PRF) and equivalence 90 77 68 60 54
ratio stratification are coupled. 20 T T/ —————1——+1140

=©~ Vary PHI Constant PRF 64
== Vary PHI and PRF

*  NOx bounds the upper limit of equivalence
ratio stratification at ¢=0.5 (Dec. et al.
SAE 2006-01-0629)

* Inthe present study the equivalence ratio
can vary from 0.27 to 0.5 (i.e., premixed to
NOX limit)

* The equivalence ratio range to avoid NOx
formation corresponds to a PRF range of
100 (premixed iso-octane) to 54

120

—
(&)

SENKIN constant volume
ignition delay calculations
ERC PRF mechanism 780

. Temperature: 837 K 60
- Pressure: 27 bar
5' &9 - | 40

100

Ignition Delay [ms]
o

20

Ignition Delay [CA @ 1200 rpm]

‘T T | PRE = Micsmis 025 03 035 04 045 09
o E \ mfuel Equivalence Ratio [-]
0 08f
S I \ P = 1008, i Constant volume ignition delay
gL NOx Limitd PRF calculations suggest that PRF
S o ] stratification dominates equivalence
R \ ratio stratification at the present
E‘o.z: : conditions

20 40 60 80 100
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