Road Mapping Engine Technology for Post-2020 Heavy Duty Vehicles

Detroit, October 5th 2011
Dr. Igor Gruden, Marc Allain, Craig Savonen

DTNA / DDC Super Truck Team
Agenda

- Total operating costs
- CO2 Regulatory
- Truck requirements
- Supertruck Technology elements
 - Downsizing
 - Combustion System
 - Parasitics
 - Integrated Powertrain Optimization
 - Transient control
- Summary Roadmap
Fuel Economy Is Still King

• Fuel Economy Is Expected To Continue To Be #1 Priority From Our Trucking Customers.

• Yet, Their Profitability, If Not Survival Depends Keenly In Knowing and Anticipating Total Truck Life Cycle Operating Costs, Including Reliability /Up-Time, Durability, and Payback Duration For Newer, Higher Complexity Technology.

• Cyclical Fuel Market Trends – Future Optimized NO\textsubscript{x}/BSFC Variable Engine Maps Would Adjust Dynamically To DEF/Fuel Price Ratios While Ensuring Regulatory Compliance.

![Weekly U.S. No 2 Diesel Ultra Low Sulfur (0-15 ppm) Retail Sales by All Sellers](image1)

![Combined On-road Fuel and DEF Consumption vs. Engine out NO\textsubscript{x}](image2)

Source: U.S. Energy Information Administration
CO₂ Regulatory Activities for Heavy Duty Markets

USA
Legislation Finalized September 2011
- Reduction target between 6 and 23% depending on vehicle class
- (2017 compared to 2010)
Engine targets based on FTP-, SET-cycle tests
Separate vehicle targets based on „bin mapping“ method for 5 technologies.

Europe
EC Ordered 2 studies:
- Policy Options
- Measurement procedure of HDV fuel consumption
ACEA proposes simulation based approach similar to Japanese legislation extended by vehicle improvements.

Japan
Legislation in Place Since 2006
- Reduction target 12.2% 2015 compared to 2002 (target tightening expected)

<table>
<thead>
<tr>
<th>Category</th>
<th>Target Consumption (\text{km} / \text{L})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.83</td>
</tr>
<tr>
<td>2</td>
<td>10.33</td>
</tr>
<tr>
<td>3</td>
<td>9.51</td>
</tr>
<tr>
<td>4</td>
<td>9.12</td>
</tr>
<tr>
<td>5</td>
<td>8.84</td>
</tr>
<tr>
<td>6</td>
<td>8.52</td>
</tr>
<tr>
<td>7</td>
<td>8.00</td>
</tr>
<tr>
<td>8</td>
<td>9.49</td>
</tr>
<tr>
<td>9</td>
<td>9.97</td>
</tr>
<tr>
<td>10</td>
<td>4.15</td>
</tr>
</tbody>
</table>

China
Legislation Targeted To Be Finalized by End of 2012
Proposal for standardized fuel consumption
Chassis dyno test for base type vehicles. Simulation allowed for variants.
C-WHVC (Chinese version). Vehicle class specific target values.
Super Truck Technology Elements

Enhanced high pressure fuel injection system

Optimized Combustion Including VVT

Aerodynamics

Exhaust Heat Recovery & turbocharging

Optimized Aftertreatment

Hybrid Transmission Concepts

Super Truck Technology Elements

Predictive Torque & Auxiliary Management

Next Generation Controller

DTNA / DDC Super Truck Team
Engine Technology Forged To Meet Future Requirements

- Reduced Gas and Fluid Parasitics, Optimized Engine/Vehicle Aerodynamics & Cooling
- Reduced cruise load
- Reduced Weight & Space Claim, Higher BMEP / lower ISFC, Optimized Exhaust Thermal Signature, Freight Efficiency

Supertruck Targets
- 50% eff = 0.167 kg/kWhr
- 55% eff = 0.152 kg/kWhr

Thermal Efficiency vs BSFC

<table>
<thead>
<tr>
<th>Engine Thermal Efficiency (%)</th>
<th>BSFC (kg/kWhr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% eff</td>
<td>0.167</td>
</tr>
<tr>
<td>55% eff</td>
<td>0.152</td>
</tr>
</tbody>
</table>
Perennial Combustion System Levers

- Combustion Chamber
 - Piston / Head / Liner Shape & Robustness Refinement
 - Increased Compression Ratio & Cylinder Pressure
 - Thermal Coatings & Focal Point Cooling

- Injection
 - Evolutionary Nozzle Geometry
 - Optimized Hydraulic Flow
 - Dynamic Rate Shaping
 - Increased Injection Pressure
 - Multiple Injection
Parasitic Management

- Smarter Use Of Optimized Accessories And Pumps
- Increased Flexibility In Component Outputs
- Tighter Control of Emission Constituents
- Self-Learning Feedback Control System
Integrated Powertrain Performance Metrics

- Load Response
- Drive Time
- Driveability
- Low Speed Maneuvering
- NVH
- Thermal/Mechanical Stress
- Surge Margin
- Emission Compliance

Max. Acceleration
Max. Power
Traction Force
Post-2020 Powertrain Optimization

- Optimized Powertrain Interface
 - Torque
 - Cooling & Heating Flows
 - Data Exchange
- Engine - Exhaust Aftertreatment Thermal Marriage
- Turbo Compounding
 - Mechanical
 - Electrical
- Waste Heat Recovery System
Transient Road Mapping

• Factorial Increase In Calibration Space
• Multiple Performance Targets
• Cost Function That Minimizes Emissions And Fuel Consumption
• Optimizes Engine Operation In Real-time
• Use of Neural networks
• Predictive Control In Vehicle

Performance targets
- Torque
- Drivability
- Durability
- Fuel economy
- NOx / PM / NMHC
- NO/NO₂ ratio
- NH₃ storage
- Urea consumption
- SCR efficiency
Summary Supertruck Technology Road Map

- Advanced, fully integrated powertrain
- Hybrid Concepts
- Real time control
- Increased turbocharger efficiency
- Improved Air/EGR
- Improved Aftertreatment / thermal management
- Improved combustion Including Variable Valve timing
- Increased P max
- Downsizing
- Downspeeding

DTNA / DDC Super Truck Team
Acknowledgments

Department of Energy Headquarters

- Gurpreet Singh
- Roland Gravel

National Energy Technology Laboratory

- Carl Maronde

This material is based upon work supported by the Department of Energy National Energy Technology Lab under Award Numbers 409000-A-N8, DE-FC26-00-OR22805, and DE-EE-0003348.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Thank you for your attention!