Development and Demonstration of a Fuel-Efficient HD Engine
(Dept of Energy Supertruck Program)

William de Ojeda
Navistar

Technical Session: High-Efficiency Engine Technologies Part 1

DOE DEER CONFERENCE
Monday 3 October 2011
Detroit, Michigan

Acknowledgements: DOE Contract: DE-EE0003303
Industrial Partners: Bosch, ARGONNE, Federal Mogul, WERC
Outline

• Program Overview
 – Project Goals: Approach for Fuel Economy
 – Engine Baseline and Targets
 – Development Facilities
 – Supertruck Plan: Technology Introduction

• Efficiency Roadmap
 – Milestone 1: Engine Thermal Efficiency
 – Milestone 2: Turbocompounding
 – Milestone 3: Base Engine Technologies
 – Milestone 4: Rankine Cycle Selection

• Advanced Engine Concept
 – Impact of Fuel Reactivity
 – Challenges and Opportunities

• Summary

• Acknowledgements
Project Goals: Approach for Fuel Economy

Baseline
2010 ProStar with MAXXFORCE 13L

Engine
Combustion-Emissions
Base Engine
Heat recovery

Vehicle
Hybrid
Dual-Mode Drive
Electrified Accessories

Aero
Gap reduction
Aero Drop
Camera Mirrors

Light Weight
SMART tandem axles
Composite cab, trailer
Wide base single tires

Driveline
SMART tandem axles
Composite cab, trailer
Wide base single tires

Supertruck Concept

20% improvement in freight efficiency

30%
Engine Baseline and Targets

MY 2010
MAXXFORCE 13

Rated Power 475hp
Best BTE 42%
Engine out NOx 0.35g/bhp-hr

2200 bar Common Rail
2-Stage turbocharger
2-stage EGR cooling

Advanced Combustion Concepts
- Advanced Simulation
- Combustion feedback

Fuel Reactivity
- 3000bar capability

Variable Valve Actuation
High Efficiency Turbochargers

Advanced EGR cooling

PF

Base Engine
- Friction reduction, PCP
- Electrification of accessories

Pushing the technology frontier

4. WHR
3. Base Engine Accessories
2. Air System
1. Combustion

Base efficiency

Supertruck Targets

Rated Power 475hp
Best BTE 50%
Emissions HD

EPA 2010

Bottoming Cycles
- Electric Turbo-compound
- Rankine Cycle, Thermo-electrics
Development Facilities

Navistar

Combustion Development, Emissions Performance Benchmark

Heat Recovery Technology

BOSCH

High-injection pressure capability

CFD-Engine correlations

Argonne National Labs

Fuel Reactivity

Cylinder head redesign with PFI system installation

Federal Mogul

Friction Benchmark
Efficiency at road load condition

- Comb
- TUCO
- VVA
- Friction
- ORC

2010: currently 46.5%

MAXXFORCE 13

Combustion / Aftertreatment

Heat Recovery

Base engine improvements

Advanced Concepts: Fuel Reactivity

50% BTE and Vehicle Demonstration

55% BTE dyno demonstration
Efficiency Roadmap

Target a combined 50%
At road load condition

Supertruck Technologies towards 50% BTE
Milestone 1: Engine Thermal Efficiency

Road Map

Currently demonstrated
+3% BTE gain (to 45%)

✓ Minimize engine out NOx – Soot

✓ Maximize BTE

✓ Optimize:
 Injection timing
 Fuel pressure
 Injection events

✓ Optimize Hardware:
 Compression ratio
 Cooling system

<table>
<thead>
<tr>
<th></th>
<th>BTE (CR)</th>
<th>BTE (Inj Press)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A75</td>
<td>+1.3%</td>
<td>+0.5%</td>
</tr>
<tr>
<td>B50</td>
<td>+1.3%</td>
<td>+1.0%</td>
</tr>
<tr>
<td>C100</td>
<td>+1.2%</td>
<td>+1.2%</td>
</tr>
</tbody>
</table>
Milestone 2: Turbocompounding

Recover exhaust energy

Criteria
- highest efficiency opportunity
- best opportunity for system optimization
- synergistic with Supertruck hybridization

Support Systems¹

System integration²

Demonstrated at road load condition:
+1.4% BTE gain
(46.4% BTE)
Milestone 2: Turbocompounding (TuCo)

Optimizing work
- Load distribution across turbine wheels
- Couple hardware with flow targets (emissions)
- Leverage simulation tools

Current test results
✓ Broader range of improvement from mechanical turbocompounding

Challenges of optimization

Varying emissions at fixed hardware configuration

Two hardware configurations at same emission level
Milestone 3: Base Engine

- Up to 2% BTE gain possible across base engine improvements
- Target is 1.5% BTE gain.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Friction</th>
<th>Increased Cylinder Pressure</th>
<th>Thermal Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Cylinder</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Power Transfer</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Crankcase</td>
<td>+++</td>
<td></td>
<td>++</td>
</tr>
</tbody>
</table>

- Piston and liners
- Bushings
- Low friction camshaft
- Light weight crank
- Coolin system
- Lube oil system
Milestone 4: Rankine Cycle

Cycle Criteria:
Achieve target intake manifold temperature;
Package in the vehicle;
Produce fuel economy benefit;
Safety and crashworthiness;
Cost and cost/performance ratio;
Reliability, durability, and product life;
Serviceability and service intervals;
Minimal weight increase.

Evaluation of Fluids
Critical temperature, pressure
Triple point temp, Psat at -40°C, 25°C
Flammability (in air)
Decomposition temp (°C), products
GWP, ODP
Cost/L (Approx)
Specific gravity at 25°C

Alternative Concepts

BSFC Improvement*	HTR Cooled Condenser
Road Cycle [1] | 3.1%
Road Cycle [2] | 3.9%
USSET | 4.9%

*Estimates
The High Efficiency Diesel MAXXFORCE13:

✓ Engine operates at gross thermal efficiencies of 51-55%

Single Cylinder Research engines with advanced or two fuels:

✓ Engines have shown similar efficiencies (e.g. PPC [1], RCCI [2])
✓ Fuel reactivity shows significantly improved engine out emissions
✓ Challenges exist to make this “feasible”

MAXXFORCE13 has been reworked to operated in Dual Fuel mode

[1] Path to High Efficiency Gasoline Engines, Bengt Johansson, DEER 2010
Fuel Reactivity
Challenges and Opportunities

EPA regulations

<table>
<thead>
<tr>
<th>NOx</th>
<th>soot</th>
<th>gross eff</th>
<th>EGR%</th>
<th>Tintake (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20g/kW-hr</td>
<td>0.07</td>
<td>0.010</td>
<td>54%</td>
<td>52%</td>
</tr>
</tbody>
</table>

Diesel Fuel
- Challenging in-cylinder
- Costly aftertreatment
- Retains high efficiency
- In production

Fuel Reactivity
- Reduce engine out emissions to 2010 levels
- High Efficiency
- Challenging conditions to attain in production

Enablers with the MAXXFORCE13 Dual Fuel and Advanced EGR

VVA Combustion Feedback
Variable Geometry Turbos

EGR driving capability

PPC [1] 21bar
RCCI [2] 16bar

- 20
- 30

- EPA regulations
- NOx
- soot
- gross eff
- EGR%
- Tintake (°C)

- Fuel Reactivity
- Diesel Fuel
- Emissions
- Efficiency
- Engine Technologies

14
Project is focused on assessing and developing engine and vehicle technologies to improve freight efficiency for class 8 truck and trailer.

The MAXXFORCE 13L engine is well posed to deliver 50% BTE

The work to date includes:

- **Milestone 1**: Combustion optimization demonstrated efficiency improvement of 3% BTE
- **Milestone 2**: Demonstrated turbocompounding improvement of 1.4% BTE
- **Milestone 3**: Base Engine Technologies selection targeting 1.5% BTE gain
- **Milestone 4**: Rankine Cycle Selection (including hardware, refrigerant) targeting 1.5% BTE gain

In addition:

- Engine has been prepared to examine the impact of Fuel Reactivity
Acknowledgements

Engine Project Partners

Thank You

Willy de Ojeda
Navistar, Inc.
2601 Navistar Drive
Lisle, IL 60532
willy.deojeda@navistar.com