Low Reactivity SI Engine Lubricant Program

Southwest Research Institute
Barriers to High Efficiency Operation

Behavior in this region sets the CR of the engine

Knock is the prime source of inefficiency in SI engines!

Combustion Phasing Losses

Knock

Enrichment

Pumping Work

Friction
Adverse Effects on Efficiency from Knock

Knock

- Reduced CR
- Retarded Combustion Phasing
- Reduced Specific Power
- Fundamental Restriction on Ultimate Efficiency
- High Exhaust Temperatures
- Poor Cycle Efficiency at High Load

- Enrichment
- Higher Pumping Losses
- More Friction Contribution
- Reduced Downsizing Benefits
The role of lubricant in engine knock

Oil is pumped from the crankcase through the ring gap.

Oil enters the combustion chamber through valve guides.

Oil enters the combustion chamber through the intake ports via CCV system and/or boosting system.

Oil is deposited on the cylinder walls during normal operation.

Oil is pumped from the crankcase through the ring gap.

Lubricant is much more reactive than diesel fuel and will vaporize and auto-ignite at compression temperatures.
What lubricant properties are important?

- **Base stock**
 - Molecular structure
 - Volatility
 - Surface tension
 - Droplet release and evaporation

- **Additive package**
 - Effects volatility and surface tension
 - Molecular structure may be important

- **Initial investigations will focus on the molecular structure of the base stock**
 - Largest component
 - Most likely to have large effect on CN
Base Stock Selection

- Silicone
- Polyisobutene
- Esters
- Polyalkylene glycol
- Phosphate ester
- Alkylated naphthalene

Groups:
- Group I
- Group II
- Group III
- Group IV
- Group V

Saturates > 90%}

80 < VI < 120

Increasing Uniformity
Severity of Refining Processes

VI > 120, Saturates > 90%

Other Synthetics
SwRI Initial Investigations

- An internal SwRI project was initiated to investigate oil reactivity and its affect on knock

- Work plan had two tasks
 - Benchtop Testing
 - Engine Testing

- Project objectives
 - Study oil base stock affect on reactivity
 - Investigate oil reactivity affects on knock
Oil reactivity investigated using an Ignition Quality Tester (IQT)

- Measures derived CN / ignition delay
- Test conditions
 - Initial Pressure: 21.4 bar
 - Initial Temperature: 550°C
 - Peak Initial Temperature: 600°C
To reduce the effect of oil viscosity and atomization, SwRI used a solvent

- Extrapolate to 100% oil
Modern base stocks have very high CN numbers

> 2x the reactivity of diesel fuel

IQT Testing for Reactivity
Lubricants Prepared for Engine Testing

- **15W40 fully-formulated PAO base-stock**: IQT derived Cetane Number 78
- **High CN R&D formulation PAO base-stock**: IQT derived Cetane Number 89
- **Mid CN R&D formulation AN base-stock**: IQT derived Cetane Number 64
- **Low CN R&D formulation Ester base-stock**: IQT derived Cetane Number 38
Engine Testing

- Initial testing performed on SwRI VCR engine
 - Combustion chamber based on diesel
 - Slow-burn chamber
- 4 fully formulated fuels selected for testing
- Testing performed at three knock levels
 - Incipient (knock intensity < 0.2%)
 - Moderate (knock intensity of 5%)
 - Heavy (knock intensity of 10%)
Lubricant not only has an effect on knock limited spark timing but also on combustion phasing (CA50 timing).
Lubricant Based Combustion Effects

Lubricant effect on all parts of combustion not only end-gas region.
• Using single-cylinder VCR engine, at 1200rpm – 7.0bar nIMEP, a fuel economy improvement of ~3.0% could be realized
• Spark timing advanced from no knock to KLSA
Knock Limited CR at Fixed Combustion Phasing

- Low reactivity lubricant allowed increase in compression ratio
- Fuel economy improvement of ~4% could be observed
• Using low-reactivity lubricant, higher engine loads at MBT combustion phasing could be achieved
• Advanced formula lubricant may increase downsizing potential
• Very high CN oil is an outlier
 ➢ Other properties may dominate its performance
 • Volatility
 • Surface tension
 ➢ Indicates a need for further refinement of the method

• Mechanism for improvement
 ➢ Less knock = more advance permitted = lower fuel consumption
- Modern engines have low oil consumption
- Tests of oil introduced into the intake or mixed with the fuel indicate a large amount of oil is required to effect combustion
- However, distribution of oil and fuel is NOT homogeneous
 - Very high oil levels near wall
 - Outside the boundary layer, oil levels are significantly lower
Conclusions

- Initial results indicate that typical commercial lubricants have high reactivity
- SwRI identified alternate base stocks that appear to have reduced the reactivity of the lubricant
 - Lower reactivity lubricants appear to have a beneficial effect on spark knock
- Additives appear to effect the oil reactivity
 - Individual component contribution currently unknown
 - Potential exists to identify low reactivity components
- Utilization of low reactivity lubricants appears to have a potentially significant fuel consumption benefit
 - Other properties may play a role
 - Volatility
 - Viscosity
 - Surface Tension
 - etc....
The objective of this project is to investigate lubricant effects on knock in a high performance engine

- Engine lubricant properties will be tested
 - Physical and chemical properties

- Selected base stocks will be examined in the Ignition Quality tester (IQT)
 - Further refinements to this specialized test procedure will be conducted

- Some testing will be conducted in a constant volume combustion chamber
 - Test method will be developed to test engine oil film / combustion interaction

- Final versions of the lubricants will be tested in a modern, boosted GDI engine application