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Summary

HD regulations being wrapped up, next regs being contemplated

Further tightening of criteria regs expected. California is completing
LEV3 proposal stage. EPA considering Tier 3.

CO, mandates are proposed for HD

— Onset of another major regulatory-driven technology evolution
Engine technologies are addressing engine-out NOx and FC

- control, LT thermal management, advanced combustion approaches
SCR is addressing “secondary” issues:

— LT issues: ammonia sources and urea inj; NH3 storage formation,
mechanisms.

— Catalyst HT durability

— More understanding on SCR+DPF
New LNT compositions and designs are shown.

— Better performance, lower cost

— LNT+SCR systems advancing
DPF regen, substrate properties, material, and catalysts advancing.
DOC catalysts performance characterized

— NO2

— LDD CO emissions can be difficult
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Emerging HD regulatory issues

* Euro VI PN comitology being finalized.

— 6 X 10" #/kW-hr on the WHTC

 Quite tight for clean filters, but pre-conditioning for up to 125 hrs is
allowed

« Japan HD will harmonize with Europe in 2016-17
+ Off-cycle emissions issues emerging
— European report shows high urban emissions for SCR trucks
* Next stages of European non-road regs being contemplated
— Workshops and committees formed




NMOG+NOx emissions (g/mi)

CARB-Proposed LEVIII Standards for 2014-2022
SULEV Fleet Average NMOG+NOx.
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Figure 3. lllustration of sales share of by emission certification level to meet
proposed NMOG+NO, standard

A possible scenario to meet yearly
fleet average emissions targets.

PM reduced 70% to 3 mg/mi. Lower values are difficult to
measure, and CARB wants a different PN reg that isn’t ready yet

EPA will likely follow CARB with a Tier 3 LD regulation.




HD CO.,/Fuel Consumption Reduction: Different approaches
JP: Fuel consumption, EU: CO, focus(?), EPA: CO2 focus

EPA CO,e (CO,; N,O, CH, caps; BC) Tighter EPARegs

New EU Regs CO, (assumption) I

2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024

DoE SuperTruck DoE: +50% freight efficiency DAG: 20% reduction goal (*)
Vehicle fuel eco demo Prototype demo

John Deers pledges to reduce global greenhouse

DAG'’s “Shaping Future Transportation” (*) Seesany T A S e e
“Road to Emission Free Mobility (LD & HD)”(*) B I R I R I so.s
CO,/Fuel Eco - Government / OE Initiatives|==" " - “:ﬂ%":m‘jq:;g:;%”;“

(*): www.Daimler.com, MTZ 1-°09, http://www.cat.com/sd2009, http://www.deere.com/en_US/globalcitizenship/stewardship/metrics.html
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Emerging CO, regulations are aggressive and will result in a
paradigm shift.

Fuel consumption technologies will no longer be based on the value proposition to
the customer. They will be chosen based on mandate economics.

ACTUAL FLEET AVERAGE GHG EMISSIONS DATA THROUGH MY2008 AND
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Hardware and general strategy for meeting US2010
are described.

Fuel & Urea Consumption
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Cummins, AVL PM Forum, 3/10



Thermal management is used to reduce cold or low-
load NOX. Minimal fuel penalty possible.

Thermal Management P ——— Cold FTP Results
& light loads === With Thermal Management

= Control of fuel injection and air handling parameters | — Without Thermal Management

= Utilizes the flexibility of the XPI common rail and
variable geometry turbocharger

= Allows faster warm-up and SCR light-off

= Minimizes cooling effects of idle and light load
operations

] m [dle Operation e -

' Earlier Light-Off with
Thermal Management

\ ' = \/Ith Thermal Management
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Cummins, MinNOx Conf, 6-10



Historical research engines help predict future production

engine capability.
Significant engine NOx threshold at ~0.2-0.3 g/kW-hr NOx. Very low PM at higher
NOXx regimes.
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Massive EGR Engine — No NO, Aftertreatment

Performance
Comparison at Higher
NOx levels

»Results compared with
four 2007 heavy duty
diesel engines

=Engine operation has
been optimized for low
engine speeds

=At similar NO, levels the
Massive EGR provides
dramatically improved

performance
=Massive EGR engine
was not optimized to
operate at higher NOx
levels, so further
improvements are still
possible
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Second generation waste heat recovery system

shown.
Improvements gain 1.4% FC impact, on top of 6.2% for generation 1.

Ram Airflow ﬂ

1. Replaced water-cooled

condenser for air-cooled ‘

gained 0.2% oo - Future Directions
Engine i

2. Replaced 2-stage, : = =

centrifugal pumps with | 712 — System Architecture and Controls

single-stage positive- | : | A _ — Turbine Expander

i N e = - ) :
d;siﬁézcg?oim pump | ""‘§ g :cumn—' : 4% 2'.-5 — Expander to Engine Geartrain
3 | ' — Heat Exchangers — on and off engine
3. 'li‘::‘; Charge Aé’;g? JE..: ........ — Feedpump and instrumentation
—gained 0.6%
ry —gained 0.57% # | — Fluid Development (low GWP alternatives)
4. 5% reduction in power : — Vehicle Packaging
HH H Power Qut
transfer parasitics with I _ Cost Focus
MORC | T :
* treatment TG — .7 * Exhaust

Second generation Organic Rankine Cycle (ORC) Cummins, Emissions 2010 Conf, 6/10

improvements include the condenser, pumps, added heat
source, lower parasitic losses, and new working fluid.
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it

Potential benefit of 9%

(0] Charge Air Heat Vehicle/ Component Waorking
ene_rgy from WH R 6 2 A) Recovery Condenser Efficiencies Fluid
realized in generation 1. +1.0% Capacity +1% +1% +1%




20% improvements in CO2 cost about $25-$50/%. 30-45%
improvements will be $50-$100/%.

Gasoline technologies might peak out at 25-30% improvement, diesel at 40%.
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The coming CO, regulations will be more difficult to attain than
the criteria pollutant regulations. Engine research should focus on CO,
reductions. Aftertreatment solutions available for any challenge.
- Three-way catalysts: 1995 vs. 2010
— Cost-501t0 -70%
— Emissions -98%
- SCR: 2004 vs. 2010
— Cost-20% Most significant challenge: LT lean deNOX
— Emissions -75%
« LNT: 2005 vs. 2010
— Cost-70%
— Emissions -75%
— Fuel consumption -30%

 DPF: 2003 vs. 2010 Evolution trends: Performance improvement at
— Cost -50% similar cost (like electronics), then more cost
reduction while enhancing performance.

LT NH3 injection and thermal management
*LNT + reformer
* Cu-zeolite SCR with NH;

* pre-turbo components

* These are rough estimates of cutting edge improvements to illustrate
trends. More rigor is needed to firm these values
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SwRI, SAE 2010-01-1185

New mixer allows urea injection at T>180C
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Urea decomposition products are measured using a new
thermal/gas analysis procedure. TiO2 is an effective urea

decomposition catalyst.
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Update on ammonia adsorption SCR. First
commercial contract. Production trial in 2011.

= Start-up
€ Lnit (electrical)
Engine coolant
circulation
{-2-4 liter/min,
bypass)

Ammonia Flow Manifold
[AFM])

Main

e pdAmmine

Ammonia gas line L= cartridge

{to exhaust line interface)

ASDS-2/HD: Engine coolant system for MD/HD
Main cartridge(s) is approx. 16 liters

Modular system concept

*=  Max. peak flow of ammonia: 11 g NH;/minute.
* Max. steady state flow: 9 g NH;/minute

* AdAmmine cartridge with ~7kg available NH..

+«  Modular system configuration possible

MNOx conversion [ Catalyst temperature (°C) /

Speed (km/hr) / Ammonia dosing
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NOx_conversion [%]
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200

performance.
Performance enabled
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/ Catalyst
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150 —

High NO, conversion
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cold exhaust temperature
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Amminex, CTl SCR Conf, 7-10
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Cummins, SAE 2010-01-1182

Better transient efficiency of Fe-zeolites is explained.
Lower NH3 adsorption and impact on in situ NO oxidation.
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NOx conversion on Fe-zeolites is much more impacted by NH; than on Cu-
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SCR+DPF adds options to improve deNOx performance.
Increased volume is as effective as for flow-through catalysts. Adding catalyst to the
DPF can drop emissions 60-65% at low deNOx points.
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Engine Operating Point

SCR on the DPF cuts emissions about 60-65% at the C25 load point.




US EPA, SAE Congress 4/10

EPA reported on the first phase of the dioxin study.

No issue for “worst case” condition: no PGM, no urea, Cu-zeolite. Next: full system

Pt-Z NH;
Pt-DOC CDPF Cu-Z SCR  slip-catalyst

-

Temp. sensor

2007 Cummins
ISB 6.7 liter

Urea dosing unit ~ Urea tank

Dioxins and Furans
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» Results ranged from 0.06 to 0.7 pg/hp-hr
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» Results ranged from 0.004 to 0.024 pg/hp-hr
— CuZ Only — 9 valid tests
» Results ranged from 0.007 to 0.047 pg/hp-hr
» Outliers: 6.004, 3.796, 3.419, 1.489, and 0.858 pa/hp-hr (all PCBs elevated)
— DPF Only — 5 valid tests
» Results ranged from 0.0003 to 0.0007 pg/hp-hr
PAH results indicate a 99.6 to 99.9% reduction from engine out values when
utilizing a DOC/CDPF.
— The DPF essentially eliminated all PAH emissions within our ability to measure them.
Field Blank values
— PCDDY/Fs average 0.01 pg/hp-hr
— PCBs average 0.0024 pg/hp-hr
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LNT can emit N,O. 3% of total carbon footprint.

EN20 x310
B CO2 (Corresponding to dosed fuel)
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New ACE, SAE 2010-01-1066 Dosed fuel is 2.4% of total. N,O is 3% of

carbon footprint.



Parameters affecting NH; production in an LNT are
investigated. Flow rate and hydrogen are major factors.

250

- 80k hr' o —+—NOxout 100
E 200 [ —i— NH3 5 80
o E 400 ——N2O 8
5 c
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= l l 8 10 8 __reformer 2
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Gas Temperature [degC) H2 [ein rich duration] Gas Temperature [degC])

NH3 production in the LNT increases with Hydrogen has a big impact on WGS catalysts did not
flow rate for parts of equal length. However, NH3. Here 2% is stoichiometry
decreasing length at the same flow to for the amount of NOXx.
achieve high SV did not increase NH3 (not

shown). 80K SV with shorter parts performed

similarly to the 50K curve here.

improve ammonia formation.
However, system NOx
conversion was improved,
especially at LT .

3 glliter PGM Other impacts:
«Shorter LNT substrates did not appreciably impact system deNOx performance

*Longer rich times increase NH3 and decrease N20.
*NO/NOXx ratio has little impact.

* Residual oxygen in the rich gas can have a large negative impact on ammonia production

MIT, SAE 2010-01-1071



Performance of an NAC+SCR system is improved.
NAC NH3 formation enhanced with Pd and low-OSC. SCR durability improved.
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cycle durability of the Cu-zeolite catalyst.
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The improved combination system delivers 93%
using the OEM calibration. The SCR increased
overall performance of the low-PGM NAC by 17%.

JM, SAE 2010-01-0302
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Ford demonstrates characteristics of active and passive DPF

regen. Active: No O2 impact (>2%), soot load important, little PGM influence;
Passive: NO2 2.5X than w/o, Pt is key, zeolite had no impact.

Active Regenerations Passive Regenerations
s i 3 SRS S Ll S - Sample ID Sootwt Burnt Soot Soot Loading Reaction Rate
Tl Pt5gifs 0.1575 5.439 384.4 () : (@) (oit) SRS
| Rdbghs 0.1832 6.326 394.9 1 pLsgns |_0.2076 0.1735 7.169 30.9
3| Cu-geal 0.1590 5.491 348.0 2 pq 5gms |_0.2300 0.1645 7.942 28.2
4| ptpd,5 gife3 0.2091 7.221 431.4 3 Cuzeol 0.1346 0.0981 4.648 17.7
5| Uncoated 0.2914 10.063 617.1 4 pupq, 5 g/ns | _0-2200 0.2035 7.597 314
6| Pt30gift3 0.2787 9.624 621.3 & Desusd | 02403 0.0433 8.471 12.0
6 PL30gms | 02585 0.1868 8.927 30.6
7| Pe5 g3 0.1551 5.356 372.2 [ _
8 Pd, 5 gift3 0.1906 6.582 4121 7 Pt, 5 g/ft3 0.1808 0.1808 6.243 57.9
9 Cu-zeol 0.1619 5.591 399.2 8  Ppd, 5 gt3 0.1959 0.1959 6.765 50.5
10| Pt-Pd, 5 gift3 0.1550 5.353 383.5 9 Cu-zeol 0.1560 0.1560 5.387 41.7
M Unesitad 0.2874 9.925 512.2 10 Pt-Pd, 5 g/ft3 0.2067 0.2067 7.138 53.7
12 Pt.30 gift3 0.2834 9.787 624.0 11 Uncoated | 0.3007 0.3007 10.384 764
12 PL30gM | 2877 0.2877 9.935 83.3
: : o |
a. Little impact between_2 anq 5% 02 (1-4 vs. 7- S magns [0Tone ] 01002 20 58
10). 1% needs 50C higher inlet. 14 pdsgm3 | 01827 0.1827 6.309 20.9
. 15 e
b. Soot mass more dominant (5&6 and 11&12 vs. R e s81 12
others) Auxiliary results not shown. 17 Uncosted | 02676 0.2616 9.034 13.7
. 18 Pt30g , , 3 24.4
c. Ptand Pd are similar (1 vs. 2, 7 vs. 8) and : g.20%0 £.2060 20
convert to CO2. Cu-Z similar to uncoated a. 50% NO2 gives 2.5X faster rate (1-6 vs. 7-12)
(CO:C02=60:40). PGM had no impact on rate. b. l1\l?(,)128|s more effective at 370C than at 485C (7-12 vs
Other: c. Ptsamples at 370C and 50% NO2 are 15% faster (7,
¢ Active regen costs 0.5 MPG 10, 12 vs. 8, 9, 11), at 485C: 25% faster

- Passive extends regen freq from 400 to 467 miles, saves 9-  Cu-Z similar to uncoated.
0.1 MPG
« HNCO needs to be counted for regen of uncoated filters Ford, SAE 2010-01-0533



Umicore SAE 2010-01-0558

Direct oxidation soot catalyst is advanced.
Low or no PGM. Oxidation at 200C without NO,,

* Basis is direct oxidation of soot by oxygen at the soot-catalyst
interface. O% conducting catalyst; no NO,

-Catalyst oxidizes soot at temperatures as low at 160C.
Oxidation complete at 220C. No or low PGM

* Aided by good soot contact, but propagation occurs via
exotherm. Low thermal mass DPF is beneficial.

» Small amount of PGM will drop CO emissions from soot burn
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111) (6/1) Uncoated OS3 (PGM Free) 0.1g/L Pt/Pd 1/1

Repeat BPT tests show PGM-free catalyst perf Regeneration efficiency is better than DPF with
better than light PGM DPF. light PGM loading.



SiC membrane added to DPF drops activation energy

and ignition temperature for soot burning.
Shift in reaction mechanism is shown.
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The DPF with SiC membrane reacts
about 100C lower than conventional
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SiC has an adsorbed layer of
oxygen. The high surface area

The activation energy of soot burning makes it the predominant
with the SiC membrane is lower (80 oxXxidation mechanism.
vs. 130 kd/mole).

Tokyo Inst Tech, SAE 2010-01-0808



Biodiesel blends
for regeneration.

.06

burn faster and consume less fuel
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Soot from 20% biodiesel burns 3X

faster than regular soot.
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3X more soot is burned per unit of fuel when
20% biodiesel is used.

Biodiesel soot has more initial surface area.
When this is normalized, reaction rates
converge. (ORNL, CLEERS, 2010)



Preliminary results are available on the effect of B20
ash on DPFs and DOCs.

Cord. Cord. SIiC SiC AT AT Cord® Cord.® 18 )
Units ULSD B20 ULSD B20 ULSD B20 ULSD B20 15 | Cotalvst Space Velocity 34,588 hrl .
Ash loading oL 08 134 23 171 22 122 73 523 -
DPF T (avy) °C 5B 576 676 GE3 598 B89 599 BO2 14 o
<650°C hours 260 266 244 247 242 244 728 744 o -
650°C to 750°C  hours 488 495 493 495 495 496 1527 1532 S
750°C to 850°C  hours 43 35 14 19 27 21 73 3.0 2.0 * ULSD {124g
>850° C hours 01 11 32 35 22 25 22 52 ~
T Accelerated durabilty tests conducied to 435,000 miles E 8 ® 830(855g ash)
[= ™
o B
B20 ash was at the maximum spec for Ca+Mg and alkali in 4
accelerated loading (27X higher levels in fuel). Cordierite 2
exposed to T>750C for >3-4 hrs. 0
e 0.0 1.0 2.0 30 40 50 6.0
2% Error Bary = %% Conlidenc e Inberval sﬂut Lﬂad [EIL’

10%

%

NOZ at outlet of DOC (% of total NOx)
& H
¥ #

e
*

o
F

uLsD

150,000 mile effect of B20 on DOC

NO2 formation.

B20

435,000 mile B20 ash loads results
in 25% higher back pressure

* Filter properties of cordierite at 150,000
mile were the same for B20 and ULSD.

* Alkali was shown to chemically penetrate
up to 30% into the cordierite wall.

NREL, 8-10



PM sensor for OBD is reported.
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Continental, AVL Exhaust Gas
and Particulate Forum, 3/10

| Sensor element collects soot and monitors current, then

periodically regenerates to give an average soot level for
the period. Signal here is with DPF at OBD threshold
compared to good DPF.
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Oxidation Catalysts




NO, coming out of DPF is strongly dependent on DOC

CO+HC removal efficiency and Pt loading of DPF.
NO2 out of DOC minor impact. Zone coated DPF not effective
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NO2 level coming out of CSF is generally independent of NO2
coming out of DOC. Both DOCs remove HC+CO efficiently.
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On the other hand, NO2 coming out of CSF is much more
dependent on CO+HC coming out of DOC.
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Impact of high Pt/Pd ratio in DPF. Same total loading



Fuel conservation measures can drop exhaust temperatures 5-

10C°, resulting in CO increases. Intake throttling and EGR cutoff are
effective measures to keep DOC hot.

= || Cumulative fID Emissions J I r—uelconsumpllion (I Reduction of CO raw emissions b-F
ol ZIZ}:S!IE‘Z”&222531?52.?2221’3::29”‘ 221‘ :ﬁgg t: ) ..1'21-"-7-‘-: 1.1 Optimization of pifot infection quantities
WKE _____.,_';::::Ii'--"" 1.2 Shortening of pilot injection intervals
8 i NVH 1.3 Optimization of rail prassure
- concerns < 1.4 Incraasing of air mass
= | [E5] __,:;:-.-::.'-"-": 2. Increase exhaust-gas temperature fo improve CO conver-
E ;r'--' [Tailpipe sion by.‘
E - Lfllli&%i(lnf. ) o )
E = 2.1 Refarding of main infaction
8 ” ) .
2 C \ 2.2 Reduction of rail pressura
E o 2.3 Spiitting of main injection info two injection
Y70 7 20 | a0 | e00 800 1000 ’Tl1z?? events ("split main”)
me[s
Auxiliary management can drop FC by 3-5%, but exhaust 2.4 Activation of the throftle valve while coasting
T drops 5-10C°. CO emissions can increase 20%. 2 liter 2.5 Activation of exhaust-gas recirculation (EGR)
Euro 5. 1590 kg 2-Stage turbo while coasting (includ fhe necessary throtfle
’ ’ ’ 12 i I T valve control)
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Measures increase exh T by 10-30C. EGR and throttling
upon coasting are effective for this veh w/o FC incr.



Summary

HD regulations being wrapped up, next regs being contemplated

Further tightening of criteria regs expected. California is beginning LEV3
proposal stage. EPA considering Tier 3.

CO, mandates are proposed for HD

— Onset of another major regulatory-driven technology evolution
Engine technologies are addressing engine-out NOx and FC

- control, LT thermal management, advanced combustion approaches
SCR is addressing “secondary” issues:

— LT issues: ammonia sources and urea inj; NH3 storage formation,
mechanisms.

— Catalyst HT

— More understanding on SCR+DPF
New LNT compositions and designs are shown.

— Better performance, lower cost

— LNT+SCR systems advancing
DPF regen, substrate properties, material, and catalysts advancing.
DOC catalysts performance characterized

— NO2

— LDD CO emissions can be difficult
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