Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending Filter Life

September 30, 2010

Alexander Sappok, Ryan Morrow, Victor W. Wong
Jon Pazar, Isaac Doustar, Ethan Zisholtz

Massachusetts Institute of Technology
Sloan Automotive Laboratory
Cambridge, MA
Ash Impacts Diesel Particulate Filter Performance

- **Ash Sources**
 - Lubricant additives (Zn, Ca, Mg, S, P)
 - Engine wear, corrosion, trace metals in fuels

After only 33,000 miles 50% of material trapped in DPF is ash.
*Assumes 6 g/L maximum DPF PM load prior to regeneration

1. **LONG Time Scale (~ 100’s hours)**
 - Ash build-up process and distribution in DPF

2. **SHORT Time Scale (~ minutes)**
 - Changes in exhaust flow and temperature (engine control)
Accurately Simulate Key Oil Consumption Mechanisms

- Each parameter independently variable
- Precise control of quantity and characteristics of ash generated

System Specifications

- Exhaust heat exchangers – counter flow
- Centrifugal blower – backpressure control
- D5.66” x 6” DPF
Cummins ISB used for DPF performance evaluation before and after ash loading tests on accelerated test rig.

Cummins ISB 300
- Variable geometry turbocharger
- Cooled EGR
- Common rail fuel injection
- Fully electronically controlled
- Gaseous and PM emissions measurement systems

DPF Flow Bench
- Core samples: D1” x 6”
- 200,000 hr$^{-1}$ maximum flow
- 700 °C maximum gas temperature
- Air or simulated exhaust
Ash Deposit Build-Up
Ash Build-Up in the DPF is a Dynamic Process

Ash Accumulation

- 60% of ash layer thickness from first 30% of ash deposits
- Ash preferentially accumulates in end-plugs during later stages of ash build-up

~ 100 μm

~ 0.1 μm

~ 10 μm

L/D > 1,000
Additive Tracers

- All oils formulated to 1% sulfated ash
- Applied in series to same DPF (~ 7 kg of oil each)

<table>
<thead>
<tr>
<th>Order of Application</th>
<th>Ca</th>
<th>Mg</th>
<th>Zn</th>
<th>S</th>
<th>P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Base + Ca</td>
<td>0.30</td>
<td></td>
<td>0.04</td>
<td></td>
<td></td>
<td>0.33</td>
</tr>
<tr>
<td>2 Base + Zn</td>
<td></td>
<td>0.36</td>
<td>0.69</td>
<td>0.33</td>
<td></td>
<td>1.37</td>
</tr>
<tr>
<td>3 Base + Mg</td>
<td>0.21</td>
<td></td>
<td>0.05</td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
</tbody>
</table>

DPF Specifications

- Cordierite – D5.66” x 6” 200/12, catalyzed
- Washcoat + Pt-based catalyst

Test Fuel - ULSD (Metals below ICP MDL ~1.0 – 0.05 ppm)
Nearly twice as much ash produced with base oil + ZDDP

- Due to greater proportion of sulfur and phosphorous content

Despite 2X more ZDDP ash, little increase in pressure drop

*Total elemental ash-related additive content
Application of Tracer Produces Stratified Ash Layers

- Average Thickness μm
- Bulk Ash Distribution
- Tracer Distribution
- Distance from DPF Face [mm]
- DPF Substrate
- Ca Ash
- Zn Ash
- Mg Ash
- Radial Center
- Plug

Graphs showing:
- Bulk Ash Distribution with data points for Ca, Zn, and Mg.
- Tracer Distribution with similar data points.
Ash Plug Evolution Consistent with Tracers

Distance from DPF End [µm]

- Ca Layer
- Zn Layer

Relative Abundance

Ca, Zn, Mg
Impact of Exhaust Conditions on Ash Properties
Exhaust Temperature Significantly Affects Ash Volume

- Large decrease in ash volume for temperatures over 700 °C
 - Reduction in ash weight over temperature ranges less than 10%
 - Typical ash porosities 85% - 95% means large potential to reduce volume

Change in Length [%] = dL/Lo
*Sintering Onset

Competing Effects on ΔP Based on Ash Distribution

Temperature [C]

Field CJ-4: *705 °C
Lab Zn: *800 °C
Lab Ca: *1,260 °C
Lab CJ-4: *940 °C

Lost contact with probes
Ash Core Sample Investigations of Exhaust Effects

DPF Specifications
- Cordierite D1” x 6” 200/12, catalyzed

Lubricant Composition
- All oils formulated to 1% sulfated ash

DPF Ash-Loaded Core Sample Test Procedure (Duplicate)

1. Evaluate pressure drop response using flow bench with air (ambient)
2. Heat core samples in furnace 1.5 hr (650 C…..1,100 C)
3. Re-evaluate DPF pressure drop response on flow bench (1)

<table>
<thead>
<tr>
<th>DPF</th>
<th>Ash Level</th>
<th>Lubricant</th>
<th>Regeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordierite Catalyzed 200/12</td>
<td>12.5</td>
<td>Commercial CJ-4</td>
<td>Periodic</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td></td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>Base Oil + ZDDP</td>
<td>Periodic</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Base Oil + Ca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Short-Term High Flows have Small Effect on Ash Packing

Relative Change in ΔP Before and After Exposure to High Flow

- DPF pressure drop evaluated on flow bench with air at ambient conditions
- Filters heated to specified temperature for 1.5 hours and allowed to cool prior to test

Effect on ΔP -5% to +15%

Max Flow: 200K hr⁻¹
Elevated Temperatures Exert Large Effect on Ash Packing

30% - 60% Reduction in ΔP with Short-Term Exposure to 900°C

Conditions
Air: 25°C
SV: 50,000 hr⁻¹
Large Reduction in Ash Volume at Elevated Temperatures

- 650°C
- 700°C
- 800°C
- 900°C
- 1,000°C
- 1,100°C

ZDDP

Calcium

CJ-4 (P)

CJ-4 (C)

28 g/L

42 g/L

33 g/L
High Temperatures Cause Ash Layer Cracking/Shrinking

Despite large volume reduction, ash weigh change < 7%
Summary and Conclusions

I. Ash Accumulation and Distribution

- Lubricant additive tracers applied to track evolution of ash deposits
- Increase in DPF pressure drop much greater with Ca and Mg than ZDDP
- Ash preferentially accumulates in plug during later stages of deposition

II. Ash Sensitivity to Exhaust Conditions

- Short-term exposure to high flow rates (200K hr⁻¹) exert little effect on ash packing and DPF pressure drop
- Elevated temperature excursions have the potential to significantly reduce ash-related pressure drop 30% - 60%
- High porosity of ash responsible for large reduction in volume when heated
- Effects on DPF integrity and ash removal require additional investigation
Acknowledgements

- Research supported by: MIT Consortium to Optimize Lubricant and Diesel Engines for Robust Emission Aftertreatment Systems
- We thank the following organizations for their support:
 - Caterpillar - Chevron/Oronite - Cummins
 - Detroit Diesel - Infineum - Komatsu
 - NGK - Oak Ridge National Lab - Süd-Chemie
 - Valvoline - Ford - Lutek

- MIT Center for Materials Science and Engineering
Ash Plug Formation and Build Up

Front of Plug

- Sulfur
- Calcium
- Zinc
- Phosphorus
- Magnesium

Front of plug mostly Mg

Back of Plug

- Sulfur
- Calcium
- Zinc
- Phosphorus
- Magnesium

- No Mg in back of plug
- Zn and Ca dominant