High-Efficiency Engine Technologies Session
Introduction

Detroit, Sept. 29th 2010
Derek Rotz, Rakesh Aneja, Mark Groeneweg,
David Kayes, Alan Pearson, Sandeep Singh, Kevin Sisken
Changed priorities - Transition from emission regulations to CO_2 footprint & fuel economy
Predictive Technologies

2 Enables the truck to “see” the road that lies ahead

2 Uses on-board GPS and 3D digital maps

2 ‘Sees’ upcoming hills in advance

• Enables vehicle systems to be optimized for fuel economy

• Where can Predictive Technologies be used?
• Evaluates 2 kilometers of upcoming road grade
• Optimizes desired cruise speed to save fuel
• Maximum of 6% deviation from set speed
3D Digital Map Database

- High precision positioning and terrain data
 - Longitude, Latitude
 - Heading, Slope
- Covers over 200,000 highway miles in the continental 48 US states
Scoping Plans for 50% Improvement in Class 8 Freight Efficiency

Detroit, Sept. 29th 2010
Derek Rotz, Rakesh Aneja, Mark Groeneweg,
David Kayes, Alan Pearson, Sandeep Singh, Kevin Sisken
Department of Energy Super Truck Project Overview

Project objectives

Develop and demonstrate vehicle and advanced engine technology for Heavy-Duty Class 8 Trucks as follows:

- Demonstrate 50% improvement in Freight Efficiency (65,000 lbs CVW)
- Including 50% Engine Brake Thermal Efficiency
- Modeling and analysis for pathway to 55%

Funding

• Federal awards: $39.6M (+ $40M Daimler matching) over 5 years
• Pairing with partners or subcontractors encouraged
Determinants of Freight Efficiency

- Driving
- Idling
- Fuel Economy
- Power Distribution
- Hybrid Propulsion
- Energy Capture / Regeneration
- Efficient Operations
- Driving Behavior
- Route / Fleet Management
- Weight Reduction
- Freight Efficiency (ton–miles/ gallon)
Criteria to Guide Test Cycle Definition

Traffic Density

- **SuperTruck Requirements**
 - ≥ 75% Highway / Freeway Cycle
 - ≤ 25% City Cycle
 - Idling: 5/12 total test cycle duration

Terrain

Speed Limits

<table>
<thead>
<tr>
<th>Gradient (%)</th>
<th>-5 ... -3</th>
<th>-3 ... -1</th>
<th>-1 ... +1</th>
<th>+1 ... +3</th>
<th>+3 ... +5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>3%</td>
<td>11%</td>
<td>68%</td>
<td>10%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Hours of Service

- **11-Hour Driving Limit**
 - May drive a maximum of 11 hours after 10 consecutive hours off duty.

- **14-Hour Limit**
 - May not drive beyond the 14th consecutive hour after coming on duty. Following 10 consecutive hours off duty. Off-duty time does not extend the 14-hour period.

- **60/70-Hour On Duty Limit**
 - May not drive after 60/70 hours on duty in 7/8 consecutive days. A driver may restart a 7/8 consecutive day period after taking 34 or more consecutive hours off duty.

- **Sleeper Berth Provision**
 - Drivers using the sleeper berth provision must take at least 8 consecutive hours in the sleeper berth, plus a separate 2 consecutive hours either in the sleeper berth, off duty, or any combination of the two.

DTNA / DDC Super Truck Team

Public Information
Target Setting Process

Component, System & Vehicle Measurements

Energy Balance Framework (simulation)

SuperTruck Targets
Technology Assessment

- Freight Efficiency
- Vehicle Integration
- Boundary Conditions
- Economics
- SuperTruck
- Safety / Regulatory
- Reliability / Durability
- Market
- Manufacturability / Serviceability
- Maturity

DTNA / DDC Super Truck Team

Public Information 11
8 Cross-Functional SuperTruck Workstreams

- Engine Downsizing & Hybrid
- Powertrain Integration
- Energy Management
- Parasitic Losses
- Weight Reduction
- Aerodynamics
- Waste heat Recovery
- Packaging, drivability, weight distribution

Predictive Technologies

DTNA / DDC Super Truck Team
Engine Technology & Integration

Exhaust Heat Recovery

Optimized Combustion

APCRS

Optimized Aftertreatment

Engine Downsizing

Next Generation Controller

DTNA / DDC Super Truck Team
Tractor & Trailer Aerodynamics

Aerodynamics Competencies

Full Scale Wind Tunnel

Scale Wind Tunnel

Computational Fluid Dynamics

Fuel Economy Testing
Tractor-Trailer drag development: significant trailer contribution
Hybrid Electric Technology

Determinants Class 8 Hybrid Performance:

- Hybrid layout dependant
- Varies by drive cycle, terrain
- Maximized by broad feature set (regen., start/stop, WHR)
- ...

DTNA / DDC Super Truck Team
Acknowledgements

2 Department of Energy Headquarters
 2 Gurpreet Singh
 2 Roland Gravel

2 National Energy Technology Laboratory
 2 Carl Maronde
 2 Jeffrey Kooser

This material is based upon work supported by the Department of Energy National Energy Technology Lab under Award Numbers 409000-A-N8, DE-FC26-00-OR22805, and DE-EE-0003348.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.