Progress on Acidic Zirconia Mixed Oxides for Efficient NH$_3$-SCR Catalysis

E. Rohart, R. Marques, S. Deutsch (Rhodia)
O. Kröcher, M. Elsener (PSI)
D. Harris, C. Jones (MEL)
DeNOx SCR for EU6 is the preferred technology to target the NOx regulation limits and low CO₂ emissions

Worldwide emission regulations push the need for DeNOx catalysts

NOₓ regulations + pressure on CO₂ emissions = need for NH₃-SCR

Source: W. Mattes (BMW), Minnox 2008

Source: T. Seguelong, IAA 2009
SCR/DPF concepts for EU6

SCR catalyst downstream of filter:
- SCR catalyst more isothermal due to heat capacity of DPF
- NO$_2$ formation in filter improves SCR performance
- Bad NO$_x$ light-off
- Erroneous DPF regeneration may damage SCR catalyst

SCR catalyst upstream of filter:
- Good NO$_x$ light-off
- SCR catalyst cannot be damaged by DPF regeneration
- SCR catalyst exposed to larger temperature gradients
- Initiation of DPF regeneration by temperature increase through the SCR catalyst

SCR catalyst on filter:
- DPF regeneration may damage SCR catalyst
1) Rhodia lab tests on *powder model catalysts* as preliminary screening of Ac Zr materials

2) Paul Scherrer Institute (Switzerland) lab tests on *coated catalysts* as first indicator for real-world performance

3) Engine Bench Test on *Full size model catalysts* as proof of concept
Three investigation levels

1) Rhodia lab tests on powder model catalysts as preliminary screening of Ac Zr materials

2) Paul Scherrer Institute (Switzerland) lab tests on coated catalysts as first indicator for real-world performance

3) Engine Bench Test on Full size model catalysts as proof of concept
Focus on the progress and testing of Acidic Zirconia (Ac Zr)

<table>
<thead>
<tr>
<th>Label</th>
<th>Surface area fresh (m²/g)</th>
<th>Surface area hydrothermally aged at 750 °C for 16 h (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidic Mixed Oxide REV1</td>
<td>85</td>
<td>63</td>
</tr>
<tr>
<td>Acidic Zr sample with low CeO₂ loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidic Mixed Oxide REV3</td>
<td>60</td>
<td>44</td>
</tr>
<tr>
<td>New Process Acidic Zirconia sample</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Introduced at SAE 2008
- Last generation of Ac Zr successfully up-scaled to the pilot level
Ammonia storage capacity of Ac Zr materials

Fresh

<table>
<thead>
<tr>
<th></th>
<th>REV 1</th>
<th>REV 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>0.236 mol / kg</td>
<td>0.252 mol / kg</td>
</tr>
</tbody>
</table>

Hydrothermal aged 750°C/16 h

<table>
<thead>
<tr>
<th></th>
<th>REV 1</th>
<th>REV 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>0.170 mol / kg</td>
<td>0.180 mol / kg</td>
</tr>
</tbody>
</table>

REV 3 shows a rather flat temperature NH₃-TPD profile

NH₃-TPD profiles of fresh powder samples

Rev1 & Rev2 samples show very similar NH₃-TPD profile. Rev3 sample shows a flat profile even after ageing.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Amount/mol/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>REV 1</td>
<td>0.236</td>
</tr>
<tr>
<td>REV 3</td>
<td>0.252</td>
</tr>
</tbody>
</table>

REV 1 0.170 mol / kg
REV 3 0.180 mol / kg

(*) Ageing: 750 °C / 16 h
10% H₂O, 10% O₂, balance N₂

NH₃-TPD profiles of aged (*) powder samples
Three investigation levels

1) Rhodia lab tests on powder model catalysts as preliminary screening of Ac Zr materials

2) Paul Scherrer Institute (Switzerland) lab tests on coated catalysts as first indicator for real-world performance

3) Engine Bench Test on Full size model catalysts as proof of concept
PSI laboratory test apparatus

Testing conditions:
• Ac Zr powders coated on cordierite substrates of 400 cpsi, 7.5 cm³
• T = 200 - 650 °C
• GHSV = 30000 - 52000 h⁻¹
• Gas composition NO-SCR: 10% O₂, 5% H₂O, 1000 ppm NO, 0 - 1500 ppm NH₃, balance N₂
• Gas composition NO/NO₂-SCR: 10% O₂, 5% H₂O, 500 ppm NO, 500 ppm NO₂, 0 - 1500 ppm NH₃, balance N₂

1. Water reservoir
2. Liquid MFC’s
3. MFC’s
4. Water evaporator
5. Reactor
6. Catalyst sample
7. Filter
8. Flow meter
9. Diaphragm pump
10. Gas cell
NO-only SCR: M-zeolite and V-TiO$_2$

1000 ppm NO, 10 % O$_2$, and 5 % H$_2$O in N$_2$, NH$_3$ variable.

- Cu-ZSM-5 very active at T \leq 300 °C.
- Fe-ZSM-5 very active at T $>$ 400 °C.
- V$_2$O$_5$/WO$_3$-TiO$_2$ active at intermediate temperatures.
NO-only SCR: AcZr REV3

1000 ppm NO, 10 % O₂, and 5 % H₂O in N₂, NH₃ variable.

NEW Fresh Ac. Zr based catalyst - WC loading = 225 g/l

NO only -SCR; GHSV = 30'000 h⁻¹

DeNOx [%]

max. DeNOx
DeNOx at 10 ppm NH3 slip
N₂O at 10 ppm NH3 slip; [ppm]

Temperature [°C]
N₂O selectivity of V-cat., Fe-ZSM-5, Cu-ZSM-5 and Ac Zr REV3

N₂O formation at 10 ppm NH₃ slip
1000 ppm NO, 10 % O₂, and 5 % H₂O in N₂, NH₃ variable

• Only small amounts of N₂O produced over Ac Zr REV3.
Effect of hydrothermal aging

NEW Ac. Zr based catalyst - WC loading = 225 g/l

FRESH vs AGED - Max DeNOx

NO only conditions -SCR; GHSV = 30’000 h⁻¹

750 °C/16h
10% steam

No effect under “Max deNOx” conditions
Effect of hydrothermal aging

NEW Ac. Zr based catalyst - WC loading = 225 g/l

FRESH vs AGED - DeNOx at 10 ppm NH3 slip
NO only conditions -SCR; GHSV = 30'000 h-1

Decrease in deNOx activity due to limited amount of NH₃ storage
Fast-SCR over fresh AcZr REV3

500 ppm NO, 500 ppm NO₂, 10 % O₂, and 5% H₂O in N₂, NH₃ variable

> 95% NOx conversion @ T>200 oC under fast-SCR conditions.
NEW Ac. Zr based Catalyst - WC loading = 225 g/l
aged: 16 h 750°C air + 10% H₂O
Fast SCR conditions NO/NO₂-SCR; GHSV = 30'000 h⁻¹

No effect of hydrothermal aging under fast SCR conditions
NO\textsubscript{x} conversion at different NO/NO\textsubscript{2} ratios

NO/NO\textsubscript{2}-SCR; GHSV = 30'000 h-1

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 height=\textwidth,
 xlabel=Temperature [°C],
 ylabel=DeNO\textsubscript{x} at 10 ppm NH\textsubscript{3} slip [%],
 xmin=100, xmax=400,
 ymin=0, ymax=100,
 xtick={100,150,200,250,300,350,400},
 ytick={0,10,20,30,40,50,60,70,80,90,100},
 legend style={at={(0.5,0.1)},anchor=north},
 nodes near coords={\%NO\textsubscript{2}/NO\textsubscript{x}},
]
 \addplot[color=black,mark=square] coordinates {
 (100,0) (150,0) (200,0) (250,0) (300,0) (350,0) (400,0)
 (100,10) (150,10) (200,10) (250,10) (300,10) (350,10) (400,10)
 (100,20) (150,20) (200,20) (250,20) (300,20) (350,20) (400,20)
 (100,30) (150,30) (200,30) (250,30) (300,30) (350,30) (400,30)
 (100,40) (150,40) (200,40) (250,40) (300,40) (350,40) (400,40)
 (100,50) (150,50) (200,50) (250,50) (300,50) (350,50) (400,50)
 (100,60) (150,60) (200,60) (250,60) (300,60) (350,60) (400,60)
 (100,70) (150,70) (200,70) (250,70) (300,70) (350,70) (400,70)
 (100,80) (150,80) (200,80) (250,80) (300,80) (350,80) (400,80)
 (100,90) (150,90) (200,90) (250,90) (300,90) (350,90) (400,90)
 (100,100) (150,100) (200,100) (250,100) (300,100) (350,100) (400,100)
 };
 \addlegendentry{DeNO\textsubscript{x} at 10 ppm NH\textsubscript{3} slip; measurement}
 \addplot[color=black,mark=triangle] coordinates {
 (100,100) (150,100) (200,100) (250,100) (300,100) (350,100) (400,100)
 (100,90) (150,90) (200,90) (250,90) (300,90) (350,90) (400,90)
 (100,80) (150,80) (200,80) (250,80) (300,80) (350,80) (400,80)
 (100,70) (150,70) (200,70) (250,70) (300,70) (350,70) (400,70)
 (100,60) (150,60) (200,60) (250,60) (300,60) (350,60) (400,60)
 (100,50) (150,50) (200,50) (250,50) (300,50) (350,50) (400,50)
 (100,40) (150,40) (200,40) (250,40) (300,40) (350,40) (400,40)
 (100,30) (150,30) (200,30) (250,30) (300,30) (350,30) (400,30)
 (100,20) (150,20) (200,20) (250,20) (300,20) (350,20) (400,20)
 (100,10) (150,10) (200,10) (250,10) (300,10) (350,10) (400,10)
 (100,0) (150,0) (200,0) (250,0) (300,0) (350,0) (400,0)
 };
 \addlegendentry{DeNO\textsubscript{x} at 10 ppm NH\textsubscript{3} slip; calculation}
\end{axis}
\end{tikzpicture}
\end{center}
Three investigation levels

1) *Rhodia lab tests on powder model catalysts as preliminary screening of Ac Zr materials*

2) *Paul Scherrer Institute (Switzerland) lab tests on coated catalysts as first indicator for real-world performance*

3) *Full size model catalysts as proof of concept*
Engine bench test / Testing procedure

• **SCR prototype**
 • SCR catalyst based on Acidic Zirconia
 • SCR catalyst stabilised: 4 h at 570°C then aged for 25 h at 800°C
 • Washcoat loading: ~120 g/L
 • Cordierite substrate (400 cpsi)
 • \varnothing 5.66 in, length 7.00 in
 $V = 2.9 \, \text{L}$

• **DOC**
 • 400 cpsi
 \varnothing 5.66 in, length 3.80 in
 $V = 1.6 \, \text{L}$

Engine test conditions:

• Engine speed: 1300 - 3500 min$^{-1}$
• $T = 175 - 450^\circ\text{C}$
• NO_x measurement upstream and downstream of SCR catalyst
• $\alpha = \text{NH}_3,\text{in}/\text{NO}_x,\text{in} = 0.9$
AcZr SCR catalyst shows good light-off at the engine test bench even after aging.
Conclusions / Perspectives

• Zirconia-based mixed metal oxide SCR catalysts show:
 • Good thermal stability
 • High NOx conversion
 • Good light-off
 • Low N$_2$O emissions
 • Low but constant NH$_3$ storage

• Catalyst compositions need to be optimized for improved light-off and ammonia storage
Thank you for your attention